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1. Introduction
Learning how to make good decisions in complex do-
mains almost always requires some form of hierarchi-
cal reasoning. One powerful and popular framework
for incorporating temporally-extended actions in the
context of reinforcement learning is the options frame-
work (Sutton et al., 1999). Creating and leveraging
options has been the subject of many papers over the
last two decades (see e.g., McGovern & Barto, 2001;
Şimşek & Barto, 2004; Castro & Precup, 2012; Levy &
Shimkin, 2011; Mann et al., 2014) and it has been of
particular interest recently in combination with deep
reinforcement learning (Tessler et al., 2016). However,
incorporating options does not always improve learning
efficiency or outcomes as shown by Jong et al. (2008).
Therefore, we argue that it is important to build a
formal understanding of how and when options may
help or hurt reinforcement learning performance.

There has been fairly limited work on formal per-
formance bounds of RL with options. Brunskill &
Li (2014) derived sample complexity bounds for an
RMax-like algorithm for semi-Markov decision pro-
cesses (SMDPs) but their analysis cannot be immedi-
ately translated into the PAC-MDP sample complex-
ity of learning with options. Fruit & Lazaric (2017)
analyzed an SMDP variant of UCRL (Jaksch et al.,
2010) and mapped its regret to the regret of learning
in the original MDP with options. While their result
makes explicit the impact of options on the learning
performance, the proposed algorithm (UCRL-SMDP,
or SUCRL in short) needs prior knowledge on the pa-
rameters of the distributions of cumulative rewards and
durations of each option to construct confidence inter-
vals. This strong requirement makes SUCRL not very
practical in general, and ill-suited for option discovery.

In this paper we present an extension of SUCRL that
combines the semi-Markov decision process view on
options and the intrinsic MDP structure underlying
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their execution to achieve temporal abstraction with-
out relying on unknown parameters. We introduce a
transformation mapping each option to an associated
irreducible Markov chain and we show that optimistic
policies can be computed using only the stationary
distributions of the irreducible chains and the SMDP
dynamics. We propose an algorithm (Free-SUCRL,
or FSUCRL) with provable regret guarantees that com-
putes the stationary distribution of the options’ ir-
reducible Markov chains and its confidence intervals
through an ad-hoc extended value iteration algorithm.

2. Preliminaries
A finite MDP is a tuple M =

{
S,A, p, r

}
where S is

the set of states, A the set of actions, p(s′|s, a) the
probability of transition from state s to state s′ using
a, r(s, a) is the random reward associated to (s, a) with
expectation r(s, a). A deterministic policy π : S → A
maps states to actions. We define an option as a
tuple o =

{
so, βo, πo

}
where so ∈ S is the starting

state1, πo : S → A the policy, and βo : S → [0, 1]
the probability of termination. As proved by Sutton
et al. (1999), when A is replaced by a set of options
O, the resulting decision process is an SMDP MO ={
SO,O, pO, RO, τO

}
where SO ⊆ S is the set of states

where options can start and end, pO(s′|s, o) is the
probability of terminating in s′ when starting o from
s, RO(s, o) is the cumulative reward and τO(s, o) the
duration (i.e., number of actions executed).2 In the rest
of the paper, we assume that options are well defined.
Assumption 1. The set of options O is admissible
that is, 1) all options terminate in finite time with prob-
ability 1, 2) in all possible terminal states at least one
option can be started, 3) SMDP MO is communicating.

Lem. 3 of Fruit & Lazaric (2017) shows that un-
der Asm. 1, for all o ∈ O, RO(s, o) and τO(s, o)
have sub-Exponential distributions with parameters
(σR(o), bR(o)) and (στ (o), bτ (o)) respectively. The
maximal expected duration is denoted by τmax =
maxs,o {τO(s, o)}. Let t denote primitive action steps

1Restricting the standard initial set to one state so is
without loss of generality.

2Notice that RO(s, o) (similarly for τO) is well defined
only when s = so.
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and let i index decision steps at option level. The
number of decision steps up to (primitive) step t is
N(t) = max

{
n : Tn ≤ t

}
, where Tn =

∑n
i=1 τi is the

number of primitive steps executed over n decision
steps and τi is the (random) number of steps before
the termination of the option chosen at step i. Under
Asm. 1 there exists a policy π∗ : S → O over options
that achieves the largest gain (per-step reward)

ρ∗O
def
= max

π
ρπO = max

π
lim

t→+∞
Eπ
[∑N(t)

i=1 Ri
t

]
, (1)

where Ri is the reward cumulated by the option ex-
ecuted at step i. The optimal gain also satisfies the
optimality equation of an equivalent MDP obtained by
data-transformation

ρ∗O = max
o∈Os

{
RO(s, o)

τO(s, o)
(2)

+
1

τO(s, o)

(∑
s′∈S

pO(s′|s, o)u∗O(s′)− u∗O(s)

)}
,

where u∗O is an optimal bias and Os is the set of options
than can be started in s (i.e., o ∈ Os ⇔ so = s). In
the following sections, we drop the dependency on the
option set O from all previous terms whenever clear
from the context. Given the optimal average reward ρ∗O,
we evaluate the performance of a learning algorithm A
by its cumulative (SMDP) regret over n decision steps
as ∆(A, n) =

(∑n
i=1 τi

)
ρ∗O−

∑n
i=1Ri. Fruit & Lazaric

(2017) showed that ∆(A, n) is equal to the MDP regret
up to an unavoidable linear “approximation” regret
accounting for the difference between the optimal gains
of M and MO.

3. Parameter-free SUCRL for Learning
with Options

Optimism in SUCRL. At each episode, SUCRL runs
a variant of extended value iteration (EVI) (Strehl &
Littman, 2008) to solve the “optimistic” version of the
data-transformation optimality equation in Eq. 2, i.e.,

ρ̃∗ = max
o∈Os

{
max
R̃,τ̃

{
R̃(s, o)

τ̃(s, o)
+ (3)

1

τ̃(s, o)

(
max
p̃

{∑
s′∈S

p̃(s′|s, o)ũ∗(s′)
}
− ũ∗(s)

)}}
,

where R̃ and τ̃ are the vectors of cumulative rewards
and durations for all state-option pairs and they belong
to confidence intervals constructed using parameters
(σR(o), bR(o)) and (στ (o), bτ (o)) (see Sect.3 in (Fruit &
Lazaric, 2017) for the exact expression).3 As a result,

3Similarly, confidence intervals need to be computed for
p̃, but this does not require any prior knowledge on the
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Figure 1. (top) MDP with an option o starting from s0 and
executing a0 in all states with termination probabilities
βo(s0) = β0, βo(s1) = β1 and βo(s2) = 1. (middle) SMDP
dynamics associated to option o. (bottom) Irreducible MC
obtained by transforming the associated absorbing MC with
p′ = (1−β0)(1−p)+β0(1−p)+pβ1 and p′′ = β1(1−p)+p.

without any prior knowledge, such confidence intervals
cannot be directly constructed and SUCRL cannot
be run. In the following, we see how constructing
an irreducible Markov chain (MC) associated to each
option avoids this problem.

3.1. Irreducible Markov Chains Associated to
Options

A natural way to address SUCRL’s limitations is to
avoid considering options as atomic operations (as
in SMDPs) but take into consideration their inner
(MDP) structure. We notice from Eq. 2 that comput-
ing the optimal policy only requires computing the
ratio R(s, o)/τ(s, o) and the inverse 1/τ(s, o). We can
construct an irreducible MC with transition matrix Po
whose stationary distribution is directly related to these
terms. We proceed as illustrated in Fig. 1: all transi-
tions exiting the option are “merged” and “redirected”
to the initial state so (so = s0 in the figure). The set of
states of the MC is denoted So. To relate R(s, o)/τ(s, o)
and 1/τ(s, o) to Po we need an additional assumption
on the options.

Assumption 2. For any option o ∈ O, the starting
state so is also a terminal state (βo (so) = 1) and any
state s′ ∈ S with βo(s′) < 1 is an inner state (s′ ∈ So).

While the first part has a very minor impact on the

SMDP since the transition probabilities naturally belong
to the simplex over states.
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definition of O, the second part of the assumption
guarantees that options are “well designed” as it requires
the termination condition to be coherent with the true
inner states of the option, so that if βo(s′) < 1 then
s′ should be indeed reachable by the option. Under
Asm. 2, Po is an irreducible MC as any state can be
reached starting from any other state and thus it admits
a unique stationary distribution µo. We also have the
following property.

Lemma 1. Under Asm. 2, let µo be the unique sta-
tionary distribution of the irreducible MC Po associated
to option o, then ∀s ∈ S, ∀o ∈ Os,

1

τ(s, o)
= µo(s),

R(s, o)

τ(s, o)
=
∑
s′∈So

r(s′, πo(s
′))µo(s

′) (4)

We can apply Lem. 1 to Eq. 3 and obtain the optimistic
optimality equation

ρ̃∗ = max
o∈Os

{
max
µ̃o,r̃o

{ ∑
s′∈So

r̃o (s′) µ̃o(s
′)+

µ̃o(s)
(

max
b̃o

{
b̃ᵀoũ
∗}− ũ∗(s))}},

(5)

where r̃o (s′) = r̃ (s′, πo(s
′)) and b̃o = (p̃(s′|s, o))s′∈S .

Estimating µo implicitly leverages over the correlation
between cumulative reward and duration, which is
ignored when estimating R(s, o) and τ(s, o) separately.

Now, we need to provide an explicit algorithm to com-
pute the optimistic optimal gain ρ̃∗ of Eq. 5 and its
associated optimistic policy. In the next section, we
introduce an algorithm that is guaranteed to compute
an ε-optimistic policy.

3.2. SUCRL with Irreducible Markov Chains
The structure of the UCRL-like algorithm for learning
with options (called FSUCRL) is reported in Alg. 2.
Unlike SUCRL, for each option we do not directly
estimate R(s, o) and τ(s, o) but we estimate Po, and
the state-action reward r(s, a). As in SUCRL we also
estimate the SMDP transition probabilities p(s′|s, o).
We can compute the respective confidence intervals
βPk (s, o, s′), βrk(s, a) and βpk(s, o, s′) (Hoeffding and em-
pirical Bernstein) without any prior knowledge as (ig-
noring constants and logarithmic terms)

Input: Confidence δ ∈]0, 1[, rmax, S, A, O
For episodes k = 1, 2, ... do

1. Set ik := i, t = tk and episode counters νk(s, a) = 0,
νk(s, o) = 0

2. Compute estimates p̂k(s′|s, o), P̂ ′o,k, r̂k(s, a) and their
confidence intervals in Eq. 6

3. Compute an εk-approximation of the optimal optimistic
policy π̃k of Eq. 5

4. While ∀l ∈ [t+ 1, t+ τi], νk(sl, al) < Nk(sl, al) do

(a) Execute option oi = π̃k(si), obtain primitive rewards
r1i , ..., r

τi
i and visited states s1i , ..., s

τi
i = si+1

(b) Set νk(si, oi) += 1, i += 1, t += τi and
νk(s, πoi(s)) += 1 for all s ∈ {s1i , ..., sτii }

5. Set Nk(s, o) += νk(s, o) and Nk(s, a) += νk(s, a)

Figure 2. The general structure of FSUCRL.

βrk(s, a) ∝ rmax

√
1

Nk(s, a)
, (6a)

βpk(s, o, s′) ∝

√
p̂k(s′|s, o)

(
1− p̂k(s′|s, o))

Nk(s, o)
+

1

Nk(s, o)
, (6b)

βPk (s, o, s′) ∝

√
P̂o,k(s, s′)

(
1− P̂o,k(s, s′))

Nk(s, πo(s))
+

1

Nk(s, πo(s))
,

(6c)

where Nk(s, a) (resp. Nk(s, o)) is the number of sam-
ples collected at state-action s, a (resp. state-option
s, o) up to episode k, Eq. 6a coincides with the one
used in UCRL, in Eq. 6b s = so and s′ ∈ S, and in
Eq. 6c s, s′ ∈ So.

To obtain an actual implementation of Alg. 2 we need
to define an algorithm to compute an approximation of
Eq. 5 (step 3). Similar to UCRL and SUCRL, we define
an EVI algorithm starting from a function u0(s) = 0
and computing at each iteration j

uj+1(s)= max
o∈Os

{
max
µ̃o

{ ∑
s′∈So

r̃o (s′) µ̃o(s
′) (7)

+ µ̃o(s)

(
max
b̃o

{
b̃ᵀouj

}
− uj(s)

)}}
+uj(s),

where r̃o(s′) is the optimistic state-action reward (i.e.,
estimate plus the confidence bound of Eq. 6a). Fur-
thermore, we recall that the optimistic transition prob-
ability vector b̃o can be computed using the algorithm
introduced by Dann & Brunskill (2015) (App. A).

Nested extended value iteration. Our implemen-
tation of Alg. 2 builds on the observation that the
maximum over µ̃o in Eq. 7 can be seen as the opti-
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mization of the average reward (gain)

ρ∗o(uj) = max
µ̃o

{∑
s′∈So

ζo(s
′)µ̃o(s

′)

}
, (8)

where ζo is defined as ζo(so) = r̃o(so)+maxb̃o

{
b̃ᵀouj

}
−

uj(so) and ζo(s) = r̃o(s) for s 6= so. Eq. 8 is indeed the
optimal gain of a bounded-parameter MDP with states
So, an action space composed of the option action (i.e.,
πo(s)), and transitions P̃o in the confidence intervals of
Eq. 6c, and thus we can write its optimality equation

ρ∗o(uj) = max
P̃o

{
ζo(s) +

∑
s′

P̃o(s, s
′)w∗o(s′)

}
− w∗o(s), (9)

where w∗o is an optimal bias. For any input function v
we can compute ρ∗o(v) by using EVI on the bounded-
parameter MDP, thus avoiding to explicitly construct
confidence intervals on µ̃o. As a result, we obtain two
nested EVI algorithms where, starting from an initial
bias function v0(s) = 0,4 at any iteration j we set the
bias function of the inner EVI to woj,0(s) = 0 and we
compute

woj,l+1(s′) = max
P̃o

{
ζo(s) + P̃o(·|s′)ᵀwoj,l

}
, (10)

until the stopping condition loj = inf{l ≥ 0 :
sp{woj,l+1−woj,l} ≤ εj} is met, where (εj)j≥0 is a van-
ishing sequence. As woj,l+1 − woj,l converges to ρ∗o(vj)
with l, the outer EVI becomes

vj+1(s) = max
o∈Os

{
g
(
woj,loj+1 −w

o
j,loj

)}
+ vj(s), (11)

where g : v 7→ 1
2 (max{v}+ min{v}). It can be shown

that this nested scheme converges to the solution of
Eq. 5 and reaches ε-accuracy if the algorithm is stopped
when sp {vj+1 − vj}+ εj ≤ ε. One of the interesting
features of this algorithm is its hierarchical structure.
Nested EVI is operating on two different time scales by
iteratively considering every option as an independent
optimistic planning sub-problem (EVI of Eq. 10) and
gathering all the results into a higher level planning
problem (EVI of Eq. 11). This idea is at the core of
the hierarchical approach in RL, but it is not always
present in the algorithmic structure, while nested EVI
naturally arises from decomposing Eq. 7 in two value
iteration algorithms.

4. Theoretical Analysis
Before presenting the guarantees for FSUCRL, we recall
the definition of diameter of M and MO:

4We use vj instead of uj since the errors in the inner
EVI generate a sequence of functions different from {uj}.

D = max
s,s′∈S

min
π:S→A

E
[
τπ(s, s′)

]
,

DO = max
s,s′∈SO

min
π:SO→O

E
[
τπ(s, s′)

]
,

where τπ(s, s′) is the (random) number of primitive ac-
tions to move from s to s′ following policy π. We
also associate to each option o a pseudo-diameter
D̃o = (sp(ro)κ

1
o + rmaxτoκ

∞
o )/

√
mins∈So µo(s), where

κ1
o and κ∞o are condition numbers of the irreducible

MC Po associated to option o (for the `1 and `∞-norm
respectively (Cho & Meyer, 2001)), τo = τ(so, o) and
sp(ro) is the span of the rewards in the inner states of
the option. We proved the following bound
Theorem 1. Let M be a communicating MDP with
reward bounded by rmax = 1 and let O be a set of options
satisfying Asm. 1 and 2 such that σR(o) ≤ σR, στ (o) ≤
στ . We also define BO = maxs,o supp(p(·|s, o)) (resp.
B = maxs,a supp(p(·|s, a))) as the largest support of
the SMDP (resp. MDP) dynamics and D̃O = maxo D̃o.
Then its regret is bounded as (ignoring constants and
logarithmic terms)

∆(FSUCRL, n) = Õ

(
DO
√
BOSOn︸ ︷︷ ︸
∆p

+ (σR + στ )
√
n︸ ︷︷ ︸

∆R,τ

+
√
SATn + D̃O

√
BSOTn︸ ︷︷ ︸

∆µ

)
(12)

Comparison to UCRL. The regret bound for UCRL
is D
√
BSATn. As for SUCRL, the main term ∆p in

the regret of FSUCRL scales as
√
n while UCRL scales

as
√
Tn: this is the effect (and potential benefit) of

temporal abstraction. There are also additive terms
∆R,τ and ∆µ characterizing the complexity of learning
the options. While in general this additional regret
may be large, we show empirically in the next section
that FSUCRL can perform much better than both
UCRL and SUCRL. Moreover, like SUCRL, FSUCRL
can benefit from a reduction of the state-action space
(SO < SA). But Eq. 12 reveals that options can also
improve the learning speed when BO < B. This can
lead to a huge improvement e.g., when options are
designed so as to reach a specific goal (the transition
probability may be almost deterministic in this case,
even if the transitions at primitive actions are very
stochastic). This potential advantage extends the re-
sults of Fruit & Lazaric (2017) and comes from the use
of Bernstein (instead of Chernoff) confidence intervals
on pO. This also matches the intuition of what are
“good” options often present in the literature.

5. Numerical Simulations
In this section we compare the regret of FSUCRL to
SUCRL and UCRL to verify the impact of removing
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Figure 3. Regret after 1.2 · 108 steps normalized w.r.t.
UCRL for different option durations in a 20x20 grid-world.

prior knowledge about options and estimating their
structure through the irreducible MC transformation.

5.1. Temporal abstraction

We first consider the toy domain analysed by Fruit &
Lazaric (2017) that was specifically designed to show
the advantage of temporal abstraction. It is an instance
of a grid-world navigation problem where the 4 cardinal
actions are replaced by 4 cardinal options with various
maximal duration Tmax.5 The optimal policy is the
shortest path to a target state that triggers a random
restart in the grid. The reward is zero everywhere
except at the target where it is rmax = 1. To be able to
reproduce the results of Fruit & Lazaric (2017), we ran
our algorithms with Hoeffding confidence bounds for
the `1-deviation of the empirical distribution (implying
that B and BO have no impact in our simulations).

Interpretation of the results.Regret On Fig. 3 we
plot the value of the ratio R = ∆(A, n)/∆(UCRL, n)
where n = N(1.2 ·108) (with N(t) = max

{
n : Tn ≤ t

}
)

and A ∈ {SUCRL,FSUCRL} with different sets of
options characterized by the maximal duration Tmax.
When the ratio is smaller than 1, A performs better
than UCRL and conversely. Trivially, when Tmax = 1,
all algorithms are equivalent to UCRL. The value of n
is big enough for all algorithms to have explored the
environment extensively: for t ≥ 1.2 · 108 the regret
increases only logarithmically and the value of the ra-
tio is stable. When comparing FSUCRL to UCRL,
we empirically observe that the advantage of tempo-
ral abstraction is indeed preserved when removing the
knowledge of the parameters of the option (blue curve
on Fig. 3). This shows that the benefit of temporal
abstraction is not just a mere artefact of prior knowl-
edge on the options: it can be achieved without any

5Tmax is the maximal actual duration as opposed to the
maximal expected duration τmax ≤ Tmax.
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Figure 4. Evolution of the regret as Tn increases for a 14x14
four-room maze.
additional information w.r.t. UCRL. The two versions
of SUCRL plotted on Fig. 3 differ in the amount of
prior knowledge given to the algorithm: SUCRLv1 re-
ceives rmax, τmax, maxo{στ (o)} and maxo{bτ (o)} = 0,
while SUCRLv2 uses rmax, (τo)o∈O, (στ (o))o∈O (option
dependent quantities) and maxo{bτ (o)} = 0.6 As ex-
pected, the more prior knowledge, the better the regret
(curves green and red on Fig. 3). Unlike FSUCRL,
SUCRL is highly sensitive to the knowledge we have
on the distributions of RO and τO. In particular, if our
knowledge on RO and τO is very loose, SUCRL can
even perform worse than UCRL for all values of Tmax.
Although we expect SUCRL to perform better than
FSUCRL due to the additional knowledge provided to
the algorithm, the fact that the blue curve is always
below all other curves can be explained by the fact that
FSUCRL not only exploits correlations between op-
tions sharing state-action pairs (by collecting samples
at action level and not at option level like SUCRL), but
it also leverages over the correlation between RO and
τO within a single option (by being optimistic on the ra-
tio RO/τO directly through the stationary distribution
instead of RO and τO separately as in SUCRL).

5.2. Four-room maze

We now consider the famous four-room environment
introduced by Sutton et al. (1999) with the four cardinal
actions having a probability 0.2 of failure (uniformly
in any other direction). The grid-world is a square
of dimension 14x14 with every room being a square
of dimension 7x7. Each room has exactly two exit
doors. In every state of every room, we define four
options: two are leading to the two exit doors, one is

6We computed στ (o) based on the analytical formula
relating στ (o) to the dynamics of o. Moreover, given the
knowledge of rmax, τo and στ (o), the tightest bound on
σR(o) is: σR(o) ≤ rmax

√
τo + στ (o)2. In this specific prob-

lem maxo{bR(o)} = maxo{bτ (o)} = 0.
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leading to the center of the room, and the last one leads
to the unique corner of the grid in the room. Thus,
the number of state-options is slightly bigger than the
number of state-actions. The optimal policy takes the
shortest path to the target state which is located in
one of the 4 corners of the grid and the rewards are the
same as in the previous experiment. Once the target is
reached, the next state is chosen uniformly at random
in the grid. Like in the previous experiments, we ran
our algorithms with Hoeffding confidence bounds for
the `1-deviation of the empirical distribution.

Interpretation of the results. On Fig. 4, we
plot the regret ∆(A, n) as a function of Tn for A ∈
{UCRL,SUCRL,FSUCRL}. The two versions of SU-
CRL are exactly the same as in the previous experi-
ments: SUCRLv1 uses maxo{στ (o)} while SUCRLv2
uses (στ (o))o∈O. On this example, both versions of
SUCRL fail to beat UCRL. However, FSUCRL has
nearly half the regret of UCRL.

In both experiments, UCRL and FSUCRL had similar
running times meaning that the improvement in cumu-
lative regret is not at the expense of the computational
complexity.

Since FSUCRL does not require strong prior knowl-
edge about options and its regret bound is partially
computable, we believe the results of this paper could
be used as a basis to construct more principled op-
tion discovery algorithms that explicitly optimize the
exploration-exploitation performance of the learning
algorithm. Finally, the hierarchical structure of FSU-
CRLv2 calls for further investigation on how to general-
ize the approach to more than two levels, e.g., options-
over-options...
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