
Policy Search:
Actor-Critic Methods
Matteo Pirotta
Facebook AI Research

Reinforcement Learning Summer School (RLSS)

I will add the parts presented on the whiteboard soon.

Value Iteration as Gradient Descent (optional)

Value Iteration
4

Optimal Bellman Operator

Lv(s) = max
a
{r(s, a) + γ

∑

y

p(y|s, a)v(y)}

Value Iteration
vn+1 = Lvn

Guarantees [Puterman, 1994, Sec. 6.3.2]

greedy policy π+(s) ∈ arg max
a

{r(s, a) + γ
∑

y

p(y|s, a)vn+1(y)}

‖vn+1 − vn‖∞ ≤
ε(1− γ)

2γ
=⇒ ‖vπ+ − v?‖ ≤ ε

thus π+ is an ε-optimal policy

ε-optimal policy in O

(
1

1− γ log

(
1

ε(1− γ)

))
iterations

Value Iteration
4

Optimal Bellman Operator

Lv(s) = max
a
{r(s, a) + γ

∑

y

p(y|s, a)v(y)}

Value Iteration
vn+1 = Lvn

Guarantees [Puterman, 1994, Sec. 6.3.2]

greedy policy π+(s) ∈ arg max
a

{r(s, a) + γ
∑

y

p(y|s, a)vn+1(y)}

‖vn+1 − vn‖∞ ≤
ε(1− γ)

2γ︸ ︷︷ ︸
stopping condition

=⇒ ‖vπ+ − v?‖ ≤ ε

thus π+ is an ε-optimal policy

ε-optimal policy in O

(
1

1− γ log

(
1

ε(1− γ)

))
iterations

Relaxation Value Iteration (R-VI)
5

R-VI is a Krasnoselskii-Mann (KM) iteration

vn+1 = vn − αn(vn − Lvn)

this is a smooth version of VI
- αn = 1 is VI

vn − Lvn is the gradient of an unknown function f : Rn → Rn

why? ‖v? − Lv?‖∞ = 0 (vanishing gradient at the optimum)

Guarantees ∀αn = α ∈ (0, 2/(1− γ))

‖vn − v?‖∞ ≤ (γα+ |1− α|)n · ‖v0 − v?‖∞

Optimal rate: α = 1 =⇒ VI
Not faster than VI but interesting connections with gradient descent

Relaxation Value Iteration (R-VI)
5

R-VI is a Krasnoselskii-Mann (KM) iteration

vn+1 = vn − αn(vn − Lvn)

this is a smooth version of VI
- αn = 1 is VI

vn − Lvn is the gradient of an unknown function f : Rn → Rn

why? ‖v? − Lv?‖∞ = 0 (vanishing gradient at the optimum)

Guarantees ∀αn = α ∈ (0, 2/(1− γ))

‖vn − v?‖∞ ≤ (γα+ |1− α|)n · ‖v0 − v?‖∞

Optimal rate: α = 1 =⇒ VI
Not faster than VI but interesting connections with gradient descent

Gradient Descent
6

vn+1 = vn − αn∇f(vn)

Linear convergence rate when f is µ-strongly convex and L-Lipschitz continuous
(L > µ > 0)

Optimal rate is obtaine for αn = α =
2

L+ µ

∃C > 0, ‖vn − v?‖2 ≤ C
(
L− µ
L+ µ

)n

Can we map (L, µ) to parameters of VI?

R-VI as Gradient Descent
[Goyal and Grand-Clement, 2019]

7

(GD) µ‖v − w‖2 ≤ ‖∇f(v)−∇f(w)‖2 ≤ L‖v − w‖2

(V I) (1− γ)‖v − w‖∞ ≤ ‖(v − Lv)− (w − Lw)‖∞ ≤ (1 + γ)‖v − w‖∞

µ 7→ 1− γ L 7→ 1 + γ

Recall that optimal rate of R-VI is obtained for

α = 1 =
2

(1 + γ) + (1− γ)
=

2

L+ γ
as in gradient descent

and the optimal rate is γ:

γ =
(1 + γ)− (1− γ)

(1 + γ) + (1− γ)
=
L− µ
L+ µ

Strong connection between VI and gradient (simpy different norms)

R-VI as Gradient Descent
[Goyal and Grand-Clement, 2019]

7

(GD) µ‖v − w‖2 ≤ ‖∇f(v)−∇f(w)‖2 ≤ L‖v − w‖2

(V I) (1− γ)‖v − w‖∞ ≤ ‖(v − Lv)− (w − Lw)‖∞ ≤ (1 + γ)‖v − w‖∞

µ 7→ 1− γ L 7→ 1 + γ

Recall that optimal rate of R-VI is obtained for

α = 1 =
2

(1 + γ) + (1− γ)
=

2

L+ γ
as in gradient descent

and the optimal rate is γ:

γ =
(1 + γ)− (1− γ)

(1 + γ) + (1− γ)
=
L− µ
L+ µ

Strong connection between VI and gradient (simpy different norms)

Accelerated Value Iteration (A-VI)
[Goyal and Grand-Clement, 2019]

8

Nesterov Acceleration for VI
∀v0, v1 ∈ RS , n ≥ 1

hn = vn + βn(vn − vn−1)

vn+1 = hn − αn(hn − Lhn)

When βn = γ and αn = 1/(1 + γ)

ε-optimal policy in O


��

���:≤
√

2√
1 + γ√
1− γ log

(
1

ε(1− γ)

)
 iterations

From Policy Iteration to Policy Search

Policy Iteration: recap
10

Let π0 be an arbitrary stationary policy
while k = 1, . . . ,K do

Policy Evaluation: given πk compute vk = vπk

Policy Improvement: find πk+1 that is better than πk
- e.g., compute the greedy policy

πk+1(s) ∈ arg max
a∈A

{
r(s, a) + γ

∑

y

p(y|s, a)vπk(y)

}

return the last policy πK
end

Convergence is finite and monotonic [Bertsekas, 2007] (in exact settings)

ä Issues: Function approximation for vπk =⇒ Is it still converging?
Continuous actions?

Policy Iteration: recap
10

Let π0 be an arbitrary stationary policy
while k = 1, . . . ,K do

Policy Evaluation: given πk compute vk = vπk

Policy Improvement: find πk+1 that is better than πk
- e.g., compute the greedy policy

πk+1(s) ∈ arg max
a∈A

{
r(s, a) + γ

∑

y

p(y|s, a)vπk(y)

}

return the last policy πK
end

Convergence is finite and monotonic [Bertsekas, 2007] (in exact settings)

ä Issues: Function approximation for vπk =⇒ Is it still converging?
Continuous actions?

Approximate Policy Iteration
11

Issue: is no longer guaranteed to converge!

Proposition
The asymptotic performance of the policies πk generated by the API algorithm is
related to the approximation error as:

lim sup
k→+∞

‖v? − vπk‖∞︸ ︷︷ ︸
performance loss

≤ 2γ

(1− γ)2
lim sup
k→+∞

‖vk − vπk‖∞︸ ︷︷ ︸
approximation error

Approximate Policy Iteration
11

Issue: is no longer guaranteed to converge!

Proposition
The asymptotic performance of the policies πk generated by the API algorithm is
related to the approximation error as:

lim sup
k→+∞

‖v? − vπk‖∞︸ ︷︷ ︸
performance loss

≤ 2γ

(1− γ)2
lim sup
k→+∞

‖vk − vπk‖∞︸ ︷︷ ︸
approximation error

Transitional phase Stationary phase

asymptotic error

Iterations (k)

‖V
π
k
−
V

π
∗
‖

Approximate Policy Iteration: Issues
12

Potential pathologies in policy-iteration with function approximation
1 Exploration
2 Policy evaluation: bias, simulation bias/error
3 Policy improvement: policy oscillation

• local attractors, e.g., local maxima

Approximate Policy Iteration: Issues
12

Potential pathologies in policy-iteration with function approximation
1 Exploration
2 Policy evaluation: bias, simulation bias/error
3 Policy improvement: policy oscillation

• local attractors, e.g., local maxima

Approximate Policy Iteration: Issues
12

Potential pathologies in policy-iteration with function approximation
1 Exploration
2 Policy evaluation: bias, simulation bias/error
3 Policy improvement: policy oscillation

• local attractors, e.g., local maxima

Policy oscillation with lin-
ear function approxima-
tion [Koller and Parr, 2000,
Lagoudakis and Parr, 2003a]

� poor policies

Tetris [Bertsekas and Ioffe, 1996]
very pathological [e.g., Scherrer et al., 2015]

From Policy Iteration to Policy Search
14

Approximate a stochastic policy directly using function approximation

πθ : S → P(A) with θ ∈ Rd

Let J(πθ) denote the policy performance of policy πθ

 Policy optimization problem
max
πθ

J(πθ)

Solution 1: Policy Search/Black-box optimization:
Use global optimizers or gradient by finite-difference methods
Policy πθ can also be not differentiable w.r.t. θ

Solution 2: Policy gradient optimization:
Compute the gradient ∇θJ(θ) and follow the ascent direction
∇θπθ(s, a) should exist

From Policy Iteration to Policy Search
14

Approximate a stochastic policy directly using function approximation

πθ : S → P(A) with θ ∈ Rd

Let J(πθ) denote the policy performance of policy πθ

 Policy optimization problem
max
πθ

J(πθ)

Solution 1: Policy Search/Black-box optimization:
Use global optimizers or gradient by finite-difference methods
Policy πθ can also be not differentiable w.r.t. θ

Solution 2: Policy gradient optimization:
Compute the gradient ∇θJ(θ) and follow the ascent direction
∇θπθ(s, a) should exist

From Policy Iteration to Policy Search
14

Approximate a stochastic policy directly using function approximation

πθ : S → P(A) with θ ∈ Rd

Let J(πθ) denote the policy performance of policy πθ

 Policy optimization problem
max
πθ

J(πθ)

Solution 1: Policy Search/Black-box optimization:
Use global optimizers or gradient by finite-difference methods
Policy πθ can also be not differentiable w.r.t. θ

Solution 2: Policy gradient optimization:
Compute the gradient ∇θJ(θ) and follow the ascent direction
∇θπθ(s, a) should exist

Policy Gradient as Policy Update
15

Approximate Policy Iteration

πθk+1
= arg max

πθ

qπθ(s, πθ(s))

Unstable (fast)

Policy Gradient

θk+1 = θk + αk∇J(θk)

Smooth, fine control (slow)

How do we compute ∇θJ(θ)?

(recap on optimality criteria)

Finite Horizon

Policy Gradient: finite-horizon
17

Given an MDP M = (S,A, p, r,H, ρ) and a policy π

J(π) = E

[
H∑

t=1

rt|π,M
]

= Eτ∼P(τ |π,M) [R(τ)]

where τ = (s1, a1, r1, . . . , sH+1) is a trajectory and R(τ) its return (sum of returns).

Policy Gradient: finite-horizon
18

Theorem ([Williams, 1992, Sutton et al., 2000])

For any finite-horizon MDP M = (S,A, p, r,H, ρ) and differentiable policy πθ

∇θJ(πθ) = Eτ∼P(·|π,M)

[
R(τ)

H∑

t=1

∇θ log πθ(st, at)

]

Proof
19

The objective is an expectation. Want to compute the gradient w.r.t. θ

∇θJ(θ) = ∇θEτ [R(τ)] = ∇θ
∫

P(τ |θ)R(τ)dτ

=

∫
∇θP(τ |θ)R(τ)dτ

=

∫
P(τ |θ) ∇θ logP(τ |θ) R(τ)dτ

= Eτ [R(τ)∇θ logP(τ |θ)]

Last expression is an unbiased gradient estimator.
Just sample τi ∼ P(τ |θ), and compute ĝi = R(τi)∇θ logP(τ |θ)
Need to be able to compute and differentiate the density P(τ |θ) w.r.t. θ

log trick

∇θ logP(τ |θ) =
∇θP(τ |θ)
P(τ |θ)

Proof
19

The objective is an expectation. Want to compute the gradient w.r.t. θ

∇θJ(θ) = ∇θEτ [R(τ)] = ∇θ
∫

P(τ |θ)R(τ)dτ

=

∫
∇θP(τ |θ)R(τ)dτ

=

∫
P(τ |θ) ∇θ logP(τ |θ) R(τ)dτ

= Eτ [R(τ)∇θ logP(τ |θ)]

Last expression is an unbiased gradient estimator.
Just sample τi ∼ P(τ |θ), and compute ĝi = R(τi)∇θ logP(τ |θ)

Need to be able to compute and differentiate the density P(τ |θ) w.r.t. θ

log trick

∇θ logP(τ |θ) =
∇θP(τ |θ)
P(τ |θ)

Proof
19

The objective is an expectation. Want to compute the gradient w.r.t. θ

∇θJ(θ) = ∇θEτ [R(τ)] = ∇θ
∫

P(τ |θ)R(τ)dτ

=

∫
∇θP(τ |θ)R(τ)dτ

=

∫
P(τ |θ) ∇θ logP(τ |θ) R(τ)dτ

= Eτ [R(τ)∇θ logP(τ |θ)]

Last expression is an unbiased gradient estimator.
Just sample τi ∼ P(τ |θ), and compute ĝi = R(τi)∇θ logP(τ |θ)
Need to be able to compute and differentiate the density P(τ |θ) w.r.t. θ

log trick

∇θ logP(τ |θ) =
∇θP(τ |θ)
P(τ |θ)

Proof
20

Likelihood (with stochastic policies)

P(τ |π,M) = ρ(s1)

H∏

i=1

π(si, ai)p(si+1|si, ai)

logP(τ |π,M) = log ρ(s1) +

H∑

i=1

log π(si, ai) + log p(si+1|si, ai)

∇θ logP(τ |π,M) =���
��

��:0
∇θ log ρ(s1) +

H∑

i=1


∇θ log π(si, ai) +

��
���

���
��:0

∇θ log p(si+1|si, ai)




REINFORCE 21

1 Let πθ1 be an arbitrary policy
2 At each iteration k = 1, . . . ,K

• Sample m trajectory τi = (s1, a1, r1, s2, . . . , sT , aT , rT , sT+1) following πk
• Compute unbiased gradient estimate

∇̂θJ(πθk) =
1

m

m∑

i=1

(H∑

t=1

rit

)(H∑

t=1

∇θ log πθk(st, at)

)

• Update parameters
θk+1 = θk + αk∇̂θJ(πθk)

3 Return last policy πθK

REINFORCE: Intuition 22

ĝi = R(τi)∇θ logP(τi|πθ,M)

R(τi) measures how good is sample τi
Moving in the direction of ĝi pushes up the log
probability of the sample, in proportion to how
good it is

Interpretation: uses good trajectories as supervised
examples
• Like maximum likelihood in supervised learning
• good stuff are made more likely while bad less (TO

REMOVE)
• Trial and Error approach

image from “CS 294-112: Deep

Reinforcement Learning” slides by S.

Levine

[Schulman, 2016]

REINFORCE: Intuition 22

ĝi = R(τi)∇θ logP(τi|πθ,M)

R(τi) measures how good is sample τi
Moving in the direction of ĝi pushes up the log
probability of the sample, in proportion to how
good it is

Interpretation: uses good trajectories as supervised
examples
• Like maximum likelihood in supervised learning
• good stuff are made more likely while bad less (TO

REMOVE)
• Trial and Error approach

image from “CS 294-112: Deep

Reinforcement Learning” slides by S.

Levine

[Schulman, 2016]

REINFORCE: Intuition 22

ĝi = R(τi)∇θ logP(τi|πθ,M)

R(τi) measures how good is sample τi
Moving in the direction of ĝi pushes up the log
probability of the sample, in proportion to how
good it is

Interpretation: uses good trajectories as supervised
examples
• Like maximum likelihood in supervised learning
• good stuff are made more likely while bad less (TO

REMOVE)
• Trial and Error approach

image from “CS 294-112: Deep

Reinforcement Learning” slides by S.

Levine

[Schulman, 2016]

REINFORCE 23

Pros
Easy to compute
Does not use Markov property!
Can be used in partially observable MDPs without modification

Issues
Use an MC estimate of q(s, a)

It has possibly a very large variance
Needs many samples to converge

REINFORCE 23

Pros
Easy to compute
Does not use Markov property!
Can be used in partially observable MDPs without modification

Issues
Use an MC estimate of q(s, a)

It has possibly a very large variance
Needs many samples to converge

Policy Gradient: temporal structure
24

∇θJ(πθ) = E

[
H∑

t=1

∇θ log πθ(st, at)

H∑

t′=t

rt′

]

Ea∼πθ

[
∇θ log πθ(st, a)

t−1∑

t′=1

ri

∣∣∣∣τ1:t−1

]
=

(
t−1∑

t′=1

ri

)∫
πθ(st, a)∇θ log π(st, a)da

=

(
t−1∑

t′=1

ri

)∫
∇θπ(st, a)da

=

(
t−1∑

t′=1

ri

)
∇θ
∫
π(st, a)da

︸ ︷︷ ︸
:=1

= 0

in literature known as G(PO)MDP [Peters and Schaal, 2008b]

Policy Gradient: temporal structure
24

∇θJ(πθ) = E

[
H∑

t=1

∇θ log πθ(st, at)

H∑

t′=t

rt′

]

Ea∼πθ

[
∇θ log πθ(st, a)

t−1∑

t′=1

ri

∣∣∣∣τ1:t−1

]
=

(
t−1∑

t′=1

ri

)∫
πθ(st, a)∇θ log π(st, a)da

=

(
t−1∑

t′=1

ri

)∫
∇θπ(st, a)da

=

(
t−1∑

t′=1

ri

)
∇θ
∫
π(st, a)da

︸ ︷︷ ︸
:=1

= 0

in literature known as G(PO)MDP [Peters and Schaal, 2008b]

Policy Gradient: baseline
25

Further reduce the variance by introducing a baseline b(s)

∇θJ(πθ) = E

[
H∑

t=1

∇θ log πθ(st, at)

(
H∑

t′=t

rt′ − b(st)
)]

The gradient estimate is unbiased
“Near optimal choice” that minimize the variance is the expected sum of returns

b?(st) = E

[
T∑

t=1

rt|s1 = st, π,M

]

Interpretation: increase the log probability of an action at proportionally to how
much returns are better than expected (relative values)

Intuition: b(st) does not depend on the action thus

Ea∼πθ [∇θ log πθ(st, a)b(st)|τ1:t−1] = 0

Baseline derivation
Rough idea

26

∇θiJ(πθ) = Eτ [∇θi logP(τ |πθ)︸ ︷︷ ︸
:=g(τ)

(R(τ)− b)]

Var = Eτ [(g(τ)(R(τ)− b))2]− (Eτ [g(τ)(R(τ)− b)])2

∂

∂b
V ar =

∂

∂b
Eτ [g(τ)2(R(τ)− b)2]

=
���

���
���

�:0
∂

∂b
Eτ [g(τ)2R(τ)2] − 2

∂

∂b
Eτ [g(τ)2R(τ) b] +

∂

∂b
Eτ [b2g(τ)2]

=⇒ b?(τ) =
Eτ [g(τ)2R(τ)]

Eτ [g(τ)2]

=⇒ Eτ [g(τ)R(τ)]2

baseline is unbiased in
expectation

Expected return weighted by the magnitude of
the gradient

Infinite Horizon

Going beyond the finite-horizon case
28

Theorem
For an infinite horizon MDP (average or discounted), the policy gradient is

∇θJ(πθ) = Es∼dπEa∼πθ(s,·) [∇θ log πθ(s, a)qπ(s, a)]

dπ is the stationary distribution
qπ is the state-action value function

Infinite-horizon discounted
29

Define a distribution ρ over S
The γ-discounted visitation frequency for policy π is

dπ(s) = lim
T→+∞

T∑

t=1

γt−1P(st = s|π,M, ρ)

Then

qπ(s, a) = lim
T→+∞

E

[
T∑

t=1

γt−1r(st, at)|s1 = s, a1 = a, π,M

]

vπ(s) = lim
T→+∞

E

[
T∑

t=1

γt−1r(st, at)|s1 = s, π,M

]
=
∑

a

π(s, a)qπ(s, a)

J(π) = lim
T→+∞

E[

T∑

t=1

γt−1r(st, at)|π,M, ρ]

=
∑

s

dπ(s)
∑

a

π(s, a)r(s, a) =
∑

s

ρ(s)vπ(s)

Policy Gradient: proof
30

Bellman Equation

qπ(s, a) = r(s, a) +
∑

y

p(y|s, a)vπ(y)

∇θ vπ(s) =
∑

a

qπ(s, a)∇θπ(s, a) + π(s, a)∇θqπ(s, a)

=
∑

a

qπ(s, a)∇θπ(s, a) + γ
∑

a

π(s, a)
∑

y

p(y|s, a)∇θvπ(y)

︸ ︷︷ ︸
B©

Bellman equation for the gradient!

Policy Gradient: proof
31

Multiply by dπ(s) and sum over states

B© =
∑

s

dπ(s)γ
∑

a,y

π(s, a)p(y|s, a)∇θvπ(y)

=
∑

s

+∞∑

k=0

γkP(s1 → s, k, π)γ
∑

a,y

π(s, a)p(y|s, a)∇θvπ(y)

=
∑

y

(
+∞∑

k=0

γk+1P(s1 → y, k + 1, π)

)
∇θvπ(y)

=
∑

y

(
dπ(y)− P(s1 → y, 0, π)︸ ︷︷ ︸

:=ρ(y)

)
∇θvπ(y)

Summing up everything

��
���

��
��:∑

s

dπ(s)∇θvπ(s) =
∑

s,a

dπ(s)∇θπ(s, a)qπ(s, a)+
��

���
���

�:∑

y

dπ(y)∇θvπ(y) −∇θ
∑

y

ρ(y)vπ(y)

︸ ︷︷ ︸
∇θJ(π)

Policy Gradient: proof
31

Multiply by dπ(s) and sum over states

B© =
∑

s

dπ(s)γ
∑

a,y

π(s, a)p(y|s, a)∇θvπ(y)

=
∑

s

+∞∑

k=0

γkP(s1 → s, k, π)γ
∑

a,y

π(s, a)p(y|s, a)∇θvπ(y)

=
∑

y

(
+∞∑

k=0

γk+1P(s1 → y, k + 1, π)

)
∇θvπ(y)

=
∑

y

(
dπ(y)− P(s1 → y, 0, π)︸ ︷︷ ︸

:=ρ(y)

)
∇θvπ(y)

Summing up everything

��
���

��
��:∑

s

dπ(s)∇θvπ(s) =
∑

s,a

dπ(s)∇θπ(s, a)qπ(s, a)+
��

���
���

�:∑

y

dπ(y)∇θvπ(y) −∇θ
∑

y

ρ(y)vπ(y)

︸ ︷︷ ︸
∇θJ(π)

Policy Gradient: proof
31

Multiply by dπ(s) and sum over states

B© =
∑

s

dπ(s)γ
∑

a,y

π(s, a)p(y|s, a)∇θvπ(y)

=
∑

s

+∞∑

k=0

γkP(s1 → s, k, π)γ
∑

a,y

π(s, a)p(y|s, a)∇θvπ(y)

=
∑

y

(
+∞∑

k=0

γk+1P(s1 → y, k + 1, π)

)
∇θvπ(y)

=
∑

y

(
dπ(y)− P(s1 → y, 0, π)︸ ︷︷ ︸

:=ρ(y)

)
∇θvπ(y)

Summing up everything

��
���

��
��:∑

s

dπ(s)∇θvπ(s) =
∑

s,a

dπ(s)∇θπ(s, a)qπ(s, a)+
��

���
���

�:∑

y

dπ(y)∇θvπ(y) −∇θ
∑

y

ρ(y)vπ(y)

︸ ︷︷ ︸
∇θJ(π)

Policy Gradient: proof
31

Multiply by dπ(s) and sum over states

B© =
∑

s

dπ(s)γ
∑

a,y

π(s, a)p(y|s, a)∇θvπ(y)

=
∑

s

+∞∑

k=0

γkP(s1 → s, k, π)γ
∑

a,y

π(s, a)p(y|s, a)∇θvπ(y)

=
∑

y

(
+∞∑

k=0

γk+1P(s1 → y, k + 1, π)±P(s1 → y, 0, π)

)
∇θvπ(y)

=
∑

y

(
dπ(y)− P(s1 → y, 0, π)︸ ︷︷ ︸

:=ρ(y)

)
∇θvπ(y)

Summing up everything

��
���

��
��:∑

s

dπ(s)∇θvπ(s) =
∑

s,a

dπ(s)∇θπ(s, a)qπ(s, a)+
��

���
���

�:∑

y

dπ(y)∇θvπ(y) −∇θ
∑

y

ρ(y)vπ(y)

︸ ︷︷ ︸
∇θJ(π)

Policy Gradient: proof
31

Multiply by dπ(s) and sum over states

B© =
∑

s

dπ(s)γ
∑

a,y

π(s, a)p(y|s, a)∇θvπ(y)

=
∑

s

+∞∑

k=0

γkP(s1 → s, k, π)γ
∑

a,y

π(s, a)p(y|s, a)∇θvπ(y)

=
∑

y

(
+∞∑

k=0

γk+1P(s1 → y, k + 1, π)±P(s1 → y, 0, π)

)
∇θvπ(y)

=
∑

y

(
dπ(y)− P(s1 → y, 0, π)︸ ︷︷ ︸

:=ρ(y)

)
∇θvπ(y)

Summing up everything

��
���

��
��:∑

s

dπ(s)∇θvπ(s) =
∑

s,a

dπ(s)∇θπ(s, a)qπ(s, a)+
��

���
���

�:∑

y

dπ(y)∇θvπ(y) −∇θ
∑

y

ρ(y)vπ(y)

︸ ︷︷ ︸
∇θJ(π)

Policy Gradient: proof
31

Multiply by dπ(s) and sum over states

B© =
∑

s

dπ(s)γ
∑

a,y

π(s, a)p(y|s, a)∇θvπ(y)

=
∑

s

+∞∑

k=0

γkP(s1 → s, k, π)γ
∑

a,y

π(s, a)p(y|s, a)∇θvπ(y)

=
∑

y

(
+∞∑

k=0

γk+1P(s1 → y, k + 1, π)±P(s1 → y, 0, π)

)
∇θvπ(y)

=
∑

y

(
dπ(y)− P(s1 → y, 0, π)︸ ︷︷ ︸

:=ρ(y)

)
∇θvπ(y)

Summing up everything

��
���

��
��:∑

s

dπ(s)∇θvπ(s) =
∑

s,a

dπ(s)∇θπ(s, a)qπ(s, a)+
��

���
���

�:∑

y

dπ(y)∇θvπ(y) −∇θ
∑

y

ρ(y)vπ(y)

︸ ︷︷ ︸
∇θJ(π)

REINFORCE for infinite horizon
32

1 Collect m trajectories for policy π starting from s1 ∼ ρ
2 For each time t

q̂t =

T∑

t′=t

γt
′−trt′

(almost) unbiased estimate → E[q̂|st, at] = qπ(st, at)

Then

∇θJ(πθ) :=
1

m

m∑

i=1

T∑

t=1

γt−1∇θ log πθ(si,t, ai,t)
T∑

t′=t

γt
′−tri,t′

REINFORCE for infinite horizon
33

Define Ft := q̂t∇θ log πθ(st, at)

E

[
+∞∑

t=1

γt−1Ft

]
=

+∞∑

t=1

γt−1
∑

s

E[Ft|st = s]P(st = s|s1 ∼ ρ)

=
∑

s,a

qπ(s, a)∇θπ(s, a)

+∞∑

t=1

γt−1P(st = s|s1 ∼ ρ)

︸ ︷︷ ︸
:=dπ(s)

= ∇θJ(π)

Almost unbiased (T vs. +∞)
We can introduce a baseline b(st) also in this case

Policy Gradient: example
34

∇θJ(πθ) :=
1

m

m∑

i=1

T∑

t=1

γt−1∇θ log πθ(si,t, ai,t) · q̂i,t

How do we represent a policy?

Normal Policy

π(a|s) =
1

σω(s)
√

2π
e
− (a−µθ(s))2

2σ2
ω(s)

then

∇θ log π(a|s) =
(a− µθ(s))
σ2
ω(s)

∇θµθ(s)

∇ω log π(a|s) =
(a− µθ(s))2 − σ2

ω(s)

σ3
ω(s)

∇ωσω(s)

Gibbs (softmax) policy

π(a|s) =
eκQθ(s,a)

∑
a′∈A e

κQθ(s,a′)

then

∇θ log π(a|s) =κ∇θQθ(s, a)

− κ
∑

a′∈A
π(a′|s)∇θQθ(s, a′)

Policy Gradient: example
34

∇θJ(πθ) :=
1

m

m∑

i=1

T∑

t=1

γt−1∇θ log πθ(si,t, ai,t) · q̂i,t

How do we represent a policy?

Normal Policy

π(a|s) =
1

σω(s)
√

2π
e
− (a−µθ(s))2

2σ2
ω(s)

then

∇θ log π(a|s) =
(a− µθ(s))
σ2
ω(s)

∇θµθ(s)

∇ω log π(a|s) =
(a− µθ(s))2 − σ2

ω(s)

σ3
ω(s)

∇ωσω(s)

Gibbs (softmax) policy

π(a|s) =
eκQθ(s,a)

∑
a′∈A e

κQθ(s,a′)

then

∇θ log π(a|s) =κ∇θQθ(s, a)

− κ
∑

a′∈A
π(a′|s)∇θQθ(s, a′)

Policy Gradient: example
34

∇θJ(πθ) :=
1

m

m∑

i=1

T∑

t=1

γt−1∇θ log πθ(si,t, ai,t) · q̂i,t

How do we represent a policy?

Normal Policy

π(a|s) =
1

σω(s)
√

2π
e
− (a−µθ(s))2

2σ2
ω(s)

then

∇θ log π(a|s) =
(a− µθ(s))
σ2
ω(s)

∇θµθ(s)

∇ω log π(a|s) =
(a− µθ(s))2 − σ2

ω(s)

σ3
ω(s)

∇ωσω(s)

Gibbs (softmax) policy

π(a|s) =
eκQθ(s,a)

∑
a′∈A e

κQθ(s,a′)

then

∇θ log π(a|s) =κ∇θQθ(s, a)

− κ
∑

a′∈A
π(a′|s)∇θQθ(s, a′)

Policy Gradient via Automatic Differentiation
35

∇θJ(πθ) :=
1

m

m∑

i=1

T∑

t=1

γt−1∇θ log πθ(si,t, ai,t) · q̂i,t

Manually code the derivative can be tedious
=⇒ use auto diff
Define a graph such that its gradient is the policy gradient

“Pseudo loss”: weighted maximum likelihood

J̃ =
1

m

m∑

i=1

T∑

t=1

log πθ(si,t, ai,t)q̂i,t

Gradient in Practice
36

Finite-Horizon γ-discounted setting

Jγ(π) = E

[
H∑

t=1

γt−1rt

]

∇θJγ(π) = E

[
H∑

t=1

γt−1∇θ log πθ(st, at)q
π(st, at)

]

In practice

∇θJ?(π) = E

[
H∑

t=1

��
�*1

γt−1 ∇θ log πθ(st, at)q
π(st, at)

]

F ∇θJ?(π) is a semi-gradient of the undiscounted objective J(π)

Gradient in Practice
36

Finite-Horizon γ-discounted setting

Jγ(π) = E

[
H∑

t=1

γt−1rt

]

∇θJγ(π) = E

[
H∑

t=1

γt−1∇θ log πθ(st, at)q
π(st, at)

]

In practice

∇θJ?(π) = E

[
H∑

t=1

��
�*1

γt−1 ∇θ log πθ(st, at)q
π(st, at)

]

F ∇θJ?(π) is a semi-gradient of the undiscounted objective J(π)

Gradient in practice
37

J(π) = E

[
H∑

t=1

rt

]
7→ ∇θJ(π) =

∑

s

dπγ (s)
∂

∂θ
vπγ (s)

︸ ︷︷ ︸
:=∇θJ?(π)

+
∑

s

vπγ (s)
∂

∂θ
dπγ (s)

U TD(0) step is also a semi-gradient of the mean squared Bellman error [Sutton and
Barto, 2018, Chapter 9]
• In tabular settings, semi-gradient TD(0) converges to a minimum of the mean

squared error [Jaakkola et al., 1994]
• Also on-policy TD with linear function approximatio [Sutton and Barto, 2018]

� Semi-policy gradient may converge to a BAD policy w.r.t. both discounted and
undiscounted objectives
Impossibility result [Nota and Thomas, 2019]:

@f(π) ∈ C such that ∇θJ?(π) =
∂

∂θ
f(π)

(Example?)

Gradient in practice
37

J(π) = E

[
H∑

t=1

rt

]
7→ ∇θJ(π) =

∑

s

dπγ (s)
∂

∂θ
vπγ (s)

︸ ︷︷ ︸
:=∇θJ?(π)

+
∑

s

vπγ (s)
∂

∂θ
dπγ (s)

U TD(0) step is also a semi-gradient of the mean squared Bellman error [Sutton and
Barto, 2018, Chapter 9]
• In tabular settings, semi-gradient TD(0) converges to a minimum of the mean

squared error [Jaakkola et al., 1994]
• Also on-policy TD with linear function approximatio [Sutton and Barto, 2018]

� Semi-policy gradient may converge to a BAD policy w.r.t. both discounted and
undiscounted objectives
Impossibility result [Nota and Thomas, 2019]:

@f(π) ∈ C such that ∇θJ?(π) =
∂

∂θ
f(π)

(Example?)

Convergence Results

Convergence Results
39

Policy gradient is stochastich gradient

θk+1 = θk + αk(∇J(θk) + noise)

J is non-convex
=⇒ converge asymptotically to a stationary point or a local minimum (under
standard technical assumptions)

what is the quality of this point?

Dynamics are linear (LQ systems) =⇒ global convergence [Fazel et al., 2018]

Surprising since min
π
JLQ(π) may be not convex, quasi-convex, and star-convex

but (far from boundaries) JLQ is “almost” smooth

Hints: use properties of functions that are gradient dominated

Convergence Results
39

Policy gradient is stochastich gradient

θk+1 = θk + αk(∇J(θk) + noise)

J is non-convex
=⇒ converge asymptotically to a stationary point or a local minimum (under
standard technical assumptions)

what is the quality of this point?

Dynamics are linear (LQ systems) =⇒ global convergence [Fazel et al., 2018]

Surprising since min
π
JLQ(π) may be not convex, quasi-convex, and star-convex

but (far from boundaries) JLQ is “almost” smooth

Hints: use properties of functions that are gradient dominated

Convergence Results
39

Policy gradient is stochastich gradient

θk+1 = θk + αk(∇J(θk) + noise)

J is non-convex
=⇒ converge asymptotically to a stationary point or a local minimum (under
standard technical assumptions)

what is the quality of this point?

Dynamics are linear (LQ systems) =⇒ global convergence [Fazel et al., 2018]

Surprising since min
π
JLQ(π) may be not convex, quasi-convex, and star-convex

but (far from boundaries) JLQ is “almost” smooth

Hints: use properties of functions that are gradient dominated

Convergence Results
40

Issues
Non-convexity of the loss function
Unnatural policy parameterization: parameters that are far in Euclidean distance
may describe the same policy (we will talk about this later)
Insufficient exploration: naive stochastic exploration
Large variance of stochastic gradients: generally increases with the length of the
horizon

Solution:

=⇒ similar to LQ, we need structural assumptions [Bhandari and Russo, 2019]

See also [Zhang et al., 2019] for convergence results

Convergence Results
40

Issues
Non-convexity of the loss function
Unnatural policy parameterization: parameters that are far in Euclidean distance
may describe the same policy (we will talk about this later)
Insufficient exploration: naive stochastic exploration
Large variance of stochastic gradients: generally increases with the length of the
horizon

Solution:

=⇒ similar to LQ, we need structural assumptions [Bhandari and Russo, 2019]

See also [Zhang et al., 2019] for convergence results

Convergence Results: Structural Properties
[Bhandari and Russo, 2019]

41

Let Πθ = {πθ|θ ∈ Θ} being the space of parametrized policies
1 Closure under policy improvement

∀π ∈ Πθ, ∃π+ ∈ Πθ s.t. π+ ∈ arg max qπ

2 Convexity of policy improvement steps

qπ(s, a) is convex in a

3 Convexity of the policy class Πθ

soft policy-iteration update (1− α)π + απ+ is feasible
4 Regularity conditions

e.g., compactness of S, existence and continuity of derivatives w.r.t. θ, etc.

Global convergence
42

Consider the structural properties
Consider infinite-horizon discounted problems

No suboptimal stationary points by following a specific ascent direction

=⇒ global convergence [Bhandari and Russo, 2019]

Idea:
πθα := (1− α)πθ + απθ′ ∈ Πθ

α ∈ [0, 1] defines a line in the policy space
What is the direction to follow in the parameter space?
find u such that the directional derivative of π′ points in the direction of π′ (smooth
curve in the parameter space)
Follow the directional derivative between πθk and π+

k

Forward connection: conservative policy iteration and adaptive gradient

Global convergence
42

Consider the structural properties
Consider infinite-horizon discounted problems

No suboptimal stationary points by following a specific ascent direction

=⇒ global convergence [Bhandari and Russo, 2019]

Idea:
πθα := (1− α)πθ + απθ′ ∈ Πθ

α ∈ [0, 1] defines a line in the policy space
What is the direction to follow in the parameter space?
find u such that the directional derivative of π′ points in the direction of π′ (smooth
curve in the parameter space)
Follow the directional derivative between πθk and π+

k

Forward connection: conservative policy iteration and adaptive gradient

Global convergence
42

Consider the structural properties
Consider infinite-horizon discounted problems

No suboptimal stationary points by following a specific ascent direction

=⇒ global convergence [Bhandari and Russo, 2019]

Idea:
πθα := (1− α)πθ + απθ′ ∈ Πθ

α ∈ [0, 1] defines a line in the policy space
What is the direction to follow in the parameter space?

find u such that the directional derivative of π′ points in the direction of π′ (smooth
curve in the parameter space)
Follow the directional derivative between πθk and π+

k

Forward connection: conservative policy iteration and adaptive gradient

Global convergence
42

Consider the structural properties
Consider infinite-horizon discounted problems

No suboptimal stationary points by following a specific ascent direction

=⇒ global convergence [Bhandari and Russo, 2019]

Idea:
πθα := (1− α)πθ + απθ′ ∈ Πθ

α ∈ [0, 1] defines a line in the policy space
What is the direction to follow in the parameter space?
find u such that the directional derivative of π′ points in the direction of π′ (smooth
curve in the parameter space)
Follow the directional derivative between πθk and π+

k

Forward connection: conservative policy iteration and adaptive gradient

Global convergence
42

Consider the structural properties
Consider infinite-horizon discounted problems

No suboptimal stationary points by following a specific ascent direction

=⇒ global convergence [Bhandari and Russo, 2019]

Idea:
πθα := (1− α)πθ + απθ′ ∈ Πθ

α ∈ [0, 1] defines a line in the policy space
What is the direction to follow in the parameter space?
find u such that the directional derivative of π′ points in the direction of π′ (smooth
curve in the parameter space)
Follow the directional derivative between πθk and π+

k

Forward connection: conservative policy iteration and adaptive gradient

Actor-Critic

REINFORCE 44

Monte-Carlo policy gradient is unbiased but still has high variance

Define an alternative estimate of qπ(s, a) =⇒ actor-critic

Critic: estimate the value function
Actor: update the policy in the direction suggested by the critic

REINFORCE 44

Monte-Carlo policy gradient is unbiased but still has high variance
Define an alternative estimate of qπ(s, a) =⇒ actor-critic

Critic: estimate the value function
Actor: update the policy in the direction suggested by the critic

Actor-Critic 45

Actor-critic algorithms maintain two sets of parameters: θ 7→ π, ω 7→ qπ

Critic can use TD(0)

for t = 1, . . . , T do
at ∼ πθ(st, ·) and observer rt and st+1

Compute temporal difference

δt = rt + γqω(st+1, at+1)− qω(st, at)

Update q estimate

ω = ω + βδt∇ωqω(xt, at)

Update policy

θ = θ + α∇θ log πθ(st, at)qω(st, at)

end
TD(0) is a semi-gradient approach [Baird, 1995, Sutton, 2015]

Actor-Critic 46

Issues:
qω(s, a) is a biased estimate of qπθ(s, a)

The update of θ may not follow the gradient of ∇θJ(πθ)

Solution:
Choose the approximation space qω(s, a) carefully
=⇒ compatible function approximation between qω and πθ

Compatible Function Approximation
47

Theorem
An action value function space qω is compatible with a policy space πθ if

qω(s, a) = ωT∇θ log πθ(s, a)

If ω minimizes the squared Bellman residual

ω = arg min
ω

Es∼dπθ

[∑

a

πθ(s, a)(qπθ(s, a)− qω(s, a))2

]

Then
∇θJ(πθ) = Es∼dπθEa∼πθ [∇θ log πθ(s, a)qω(s, a)]

Actor-Critic with a baseline
48

∇θJ(πθ) = Es∼dπθ

[∑

a

∇θπθ(s, a)(qπθ(s, a)− b(s))
]

b(s) minimizes the variance
vπ(s) is a good choice as baseline
• it minimizes the variance in average reward [Bhatnagar et al., 2009]

Aπ(s, a) = qπ(s, a)− vπ(s) is the advantage function

Actor-Critic with advantage function
49

It is possible to estimate vπ and qπ independently (e.g., by TD(0))

Aπ = qω − vν is a biased and unstable estimate

Solution:
Consider the temporal difference error

δπθ = r(s, a) + γvπθ(s′)− vπθ(s)

δπθ is an unbiased estimate of the advantage

E[δπθ |s, a] = E[r(s, a) + γvπθ(s′)|s, a]− vπθ(s) = qπθ(s, a)− vπθ(s)

Actor-Critic with advantage function
49

It is possible to estimate vπ and qπ independently (e.g., by TD(0))
Aπ = qω − vν is a biased and unstable estimate

Solution:
Consider the temporal difference error

δπθ = r(s, a) + γvπθ(s′)− vπθ(s)

δπθ is an unbiased estimate of the advantage

E[δπθ |s, a] = E[r(s, a) + γvπθ(s′)|s, a]− vπθ(s) = qπθ(s, a)− vπθ(s)

Actor-Critic with advantage function
49

It is possible to estimate vπ and qπ independently (e.g., by TD(0))
Aπ = qω − vν is a biased and unstable estimate

Solution:
Consider the temporal difference error

δπθ = r(s, a) + γvπθ(s′)− vπθ(s)

δπθ is an unbiased estimate of the advantage

E[δπθ |s, a] = E[r(s, a) + γvπθ(s′)|s, a]− vπθ(s) = qπθ(s, a)− vπθ(s)

Actor-Critic with advantage function
49

It is possible to estimate vπ and qπ independently (e.g., by TD(0))
Aπ = qω − vν is a biased and unstable estimate

Solution:
Consider the temporal difference error

δπθ = r(s, a) + γvπθ(s′)− vπθ(s)

δπθ is an unbiased estimate of the advantage

E[δπθ |s, a] = E[r(s, a) + γvπθ(s′)|s, a]− vπθ(s) = qπθ(s, a)− vπθ(s)

Actor-Critic with advantage function
50

Estimate only vν 7→ δν = r + γvν(s′)− vν(s)
� Convergence results with compatible function approximation [Bhatnagar et al., 2009]

for t = 1, . . . , T do
at ∼ πθ(st, ·) and observer rt and st+1

Compute temporal difference

δt = rt + γvν(st+1)− vν(st)

Update v estimate

ν = ω + βδt∇νvν(st)

Update policy

θ = θ + αδt∇θ log πθ(st, at)

end

State-Action baseline (side note)
51

Several recent methods [Gu et al., 2017, Thomas and Brunskill, 2017, Grathwohl et al., 2018, Liu
et al., 2018, Wu et al., 2018] have extended to state-action baselines

b(s)→ b(s, a)

� unbiased when compatible function approximation is used (proof?)

Is really working? See [Tucker et al., 2018] for complete investigation!

From online to batch actor-critic
52

So far we have observed fully online actor-critic approaches
In some case it can be inefficient (e.g., for training approximators)

=⇒ batching

1 Sample trajectories τi = {s1, a1, r1, . . . , sT+1} using πθ

v̂(si,t) =

t+p∑

k=t

γk−trk + γpvν(st+p+1) bootstrapping

2 Use supervised regression on D = {(si,t, v̂(si,t))}

arg min
ν

1

2

∑

(s,v̂)∈D
(vν(s)− v̂)2

From online to batch actor-critic
52

So far we have observed fully online actor-critic approaches
In some case it can be inefficient (e.g., for training approximators)

=⇒ batching

1 Sample trajectories τi = {s1, a1, r1, . . . , sT+1} using πθ

v̂(si,t) =

t+p∑

k=t

γk−trk + γpvν(st+p+1) bootstrapping

2 Use supervised regression on D = {(si,t, v̂(si,t))}

arg min
ν

1

2

∑

(s,v̂)∈D
(vν(s)− v̂)2

From online to batch actor-critic
52

So far we have observed fully online actor-critic approaches
In some case it can be inefficient (e.g., for training approximators)

=⇒ batching

1 Sample trajectories τi = {s1, a1, r1, . . . , sT+1} using πθ

v̂(si,t) =

t+p∑

k=t

γk−trk + γpvν(st+p+1) bootstrapping

2 Use supervised regression on D = {(si,t, v̂(si,t))}

arg min
ν

1

2

∑

(s,v̂)∈D
(vν(s)− v̂)2

Sample Efficiency in Actor-Critic
53

Issues:
Sample efficiency is pretty poor
All samples need to be generated by the current policy (on-policy learning)
Samples are discarded after a single update

Solutions
Use samples from other policies via importance sampling (not very stable)
Conservative approaches
Variance reduction techniques
Newton or Quasi-newton methods

Sample Efficiency in Actor-Critic
53

Issues:
Sample efficiency is pretty poor
All samples need to be generated by the current policy (on-policy learning)
Samples are discarded after a single update

Solutions
Use samples from other policies via importance sampling (not very stable)
Conservative approaches
Variance reduction techniques
Newton or Quasi-newton methods

Off-policy Policy Gradient
54

Usual approach [Wang et al., 2017]
• Store observed samples (a.k.a. replay buffer)
• Off-policy policy evaluation is “easy” (cf. LSTDQ [Lagoudakis and Parr, 2003a])
πk 7→ vπk

Issue:
The estimate of the gradient requires samples from πθ

Use importance ratios to avoid introducing additional bias

Off-policy Policy Gradient
54

Usual approach [Wang et al., 2017]
• Store observed samples (a.k.a. replay buffer)
• Off-policy policy evaluation is “easy” (cf. LSTDQ [Lagoudakis and Parr, 2003a])
πk 7→ vπk

Issue:
The estimate of the gradient requires samples from πθ

Use importance ratios to avoid introducing additional bias

Importance Weighting
55

Ex∼p[f(x)] = Ex∼q
[
p(x)

q(x)
f(x)

]
≈ µq =

1

N

N∑

i=1

p(xi)

q(xi)
f(xi), xi ∼ q

Variance

var(µq) =
1

N
var
(
p(x)

q(x)
f(x)

)

=
1

N

(
Ex∼p

[
p(x)

q(x)
f(x)2

]
− Ex∼p[f(x)]2

)

U The term in red may explode!

Importance Weighting
55

Ex∼p[f(x)] = Ex∼q
[
p(x)

q(x)
f(x)

]
≈ µq =

1

N

N∑

i=1

p(xi)

q(xi)
f(xi), xi ∼ q

Variance

var(µq) =
1

N
var
(
p(x)

q(x)
f(x)

)

=
1

N

(
Ex∼p

[
p(x)

q(x)
f(x)2

]
− Ex∼p[f(x)]2

)

U The term in red may explode!

Importance Weighting in Policy Gradient
[Jurcícek, 2012, Degris et al., 2012]

56

∇θJ(πθ) = Eτ∼β

[
P(τ |πθ)
P(τ |β)

T∑

t=1

γt−1∇θ log πθ(st, at)q
πθ(st, at)

]

ä what’s the issue?

Exploding or vanishing importance weights

ω(β, πθ|τ) :=
P(τ |πθ)
P(τ |β)

=
ρ(s1)

∏T
t=1 p(st+1|st, at)πθ(st, at)

ρ(s1)
∏T
t=1 p(st+1|st, at)β(st, at)

=
T∏

t=1

πθ(st, at)

β(st, at)

Partial fixes: clipping, normalization, etc.

U Off-policy RL is still a relevant open problem

Importance Weighting in Policy Gradient
[Jurcícek, 2012, Degris et al., 2012]

56

∇θJ(πθ) = Eτ∼β

[
P(τ |πθ)
P(τ |β)

T∑

t=1

γt−1∇θ log πθ(st, at)q
πθ(st, at)

]

ä what’s the issue? Exploding or vanishing importance weights

ω(β, πθ|τ) :=
P(τ |πθ)
P(τ |β)

=
ρ(s1)

∏T
t=1 p(st+1|st, at)πθ(st, at)

ρ(s1)
∏T
t=1 p(st+1|st, at)β(st, at)

=

T∏

t=1

πθ(st, at)

β(st, at)

Partial fixes: clipping, normalization, etc.

U Off-policy RL is still a relevant open problem

Sample efficiency through variance-reduced
gradient

Variance-reduced gradient estimator
58

ε = O
(

1√
T

)

ε = O
(
N
T

)

Samples

E
rr
o
r
ε

Stochastic Gradient
Full Gradient
?

Can we do something better? Visualization idea from Bach [2016]

SVRG [Johnson and Zhang, 2013]
Stochastic Variance-Reduced Gradient

59

A solution from finite-sum optimization:

max
θ
J(θ) =

N∑

i=1

fi(θ)

HJ(θ)︸ ︷︷ ︸
SVRG estimator

= ∇J(θ̃)︸ ︷︷ ︸
FG (snapshot)

+ ∇fi(θ)︸ ︷︷ ︸
SG in current parameter

− ∇fi(θ̃)︸ ︷︷ ︸
Correction term

iteration
epoch

Unbiased
Linear convergence

More data-efficient than FG
Supervised Learning (SL)

SVRG for RL: SVRPG
[Papini et al., 2018]

61

Issues in RL:
non-concavity
infinite dataset
non-stationarity: τ ∼ πθ

Solution:

HJ(θ)︸ ︷︷ ︸
SVRPG estimator

= ∇̂NJ(θ̃)︸ ︷︷ ︸
Large N

to approximate FG

+ ∇̂BJ(θ)︸ ︷︷ ︸
B�N

− ω(θ, θ̃)∇̂BJ(θ̃)︸ ︷︷ ︸
Importance weighting
for non-stationarity

iteration

epoch

U Importance sampling may reintroduce variance (use all the tricks)

Conservative Approaches

Relative Performance
65

Issues:
We would like to exploit past samples
We do not know how much to trust them
Depends on the distribution over trajectories induced by different policies

Performance-Difference Lemma
[Burnetas and Katehakis, 1997, Prop. 1], [Kakade and Langford, 2002, Lem. 6.1], [Cao, 2007]

For any policies π, π′ ∈ ΠSR

J(π′)− J(π) =
∑

s,a

dπ
′
(s, a)Aπ(s, a)

=
∑

s

dπ
′
(s)
∑

a

π′(s, a)Aπ(s, a)

Relative Performance
65

Issues:
We would like to exploit past samples
We do not know how much to trust them
Depends on the distribution over trajectories induced by different policies

Performance-Difference Lemma
[Burnetas and Katehakis, 1997, Prop. 1], [Kakade and Langford, 2002, Lem. 6.1], [Cao, 2007]

For any policies π, π′ ∈ ΠSR

J(π′)− J(π) =
∑

s,a

dπ
′
(s, a)Aπ(s, a)

=
∑

s

dπ
′
(s)
∑

a

π′(s, a)Aπ(s, a)

Proof
66

E(s,a)∼dπ′ [A
π(s, a)] = E(s,a)∼dπ′ [q

π(s, a)− vπ(s)]

= E(s,a)∼dπ′ [r(s, a)] + E(s,a)∼dπ′
[
γ
∑

y

p(y|s, a)vπ(y)− vπ(s)

]

= J(π′) + E(s,a)∼dπ′
[
γ
∑

y

p(y|s, a)vπ(y)

]
− Es∼dπ′ [v

π(s)]

= J(π′) +
∑

y

dπ
′
(y)vπ(y)−

∑

y

ρ(y)vπ(y)− Es∼dπ′ [v
π(s)]

Proof
66

E(s,a)∼dπ′ [A
π(s, a)] = E(s,a)∼dπ′ [q

π(s, a)− vπ(s)]

= E(s,a)∼dπ′ [r(s, a)] + E(s,a)∼dπ′
[
γ
∑

y

p(y|s, a)vπ(y)− vπ(s)

]

= J(π′) + E(s,a)∼dπ′
[
γ
∑

y

p(y|s, a)vπ(y)

]
− Es∼dπ′ [v

π(s)]

= J(π′) +
∑

y

dπ
′
(y)vπ(y)−

∑

y

ρ(y)vπ(y)− Es∼dπ′ [v
π(s)]

=
∑

s

(
+∞∑

k=0

γkP(s1 → s, k, π′, ρ)

)
γ
∑

a,y

π′(s, a)p(y|s, a)vπ(y)

=
∑

y

(
dπ

′
(y)− P(s1 → y, 0, π, ρ)︸ ︷︷ ︸

:=ρ(y)

)
vπ(y)

Proof
66

E(s,a)∼dπ′ [A
π(s, a)] = E(s,a)∼dπ′ [q

π(s, a)− vπ(s)]

= E(s,a)∼dπ′ [r(s, a)] + E(s,a)∼dπ′
[
γ
∑

y

p(y|s, a)vπ(y)− vπ(s)

]

= J(π′) + E(s,a)∼dπ′
[
γ
∑

y

p(y|s, a)vπ(y)

]
− Es∼dπ′ [v

π(s)]

= J(π′) +
∑

y

dπ
′
(y)vπ(y)−

∑

y

ρ(y)vπ(y)− Es∼dπ′ [v
π(s)]

=
∑

s

(
+∞∑

k=0

γkP(s1 → s, k, π′, ρ)

)
γ
∑

a,y

π′(s, a)p(y|s, a)vπ(y)

=
∑

y

(
dπ

′
(y)− P(s1 → y, 0, π, ρ)︸ ︷︷ ︸

:=ρ(y)

)
vπ(y)

Optimization step 67

max
π′

J(π′)

= max
π′

J(π′)− J(π)

= max
π′

E(s,a)∼dπ′ [A
π(s, a)]

Issue: as before, cannot be directly estimated using information from π

Optimization step 67

max
π′

J(π′) = max
π′

J(π′)− J(π)

= max
π′

E(s,a)∼dπ′ [A
π(s, a)]

Issue: as before, cannot be directly estimated using information from π

Optimization step 67

max
π′

J(π′) = max
π′

J(π′)− J(π)

= max
π′

E(s,a)∼dπ′ [A
π(s, a)]

Issue: as before, cannot be directly estimated using information from π

Optimization step 68

J(π′)− J(π) = Es∼dπ
[∑

a

π′(s, a)Aπ(s, a)

]
+
∑

s

(dπ
′
(s)− dπ(s))

∑

a

π′(s, a)Aπ(s, a)

where ε = max
s

∣∣Ea∼π′ [Aπ(s, a)]
∣∣ and

DTV (π′‖π)[s] =
∑

a

|π′(s, a)− π(s, a)|

Optimization step 68

J(π′)− J(π) = Es∼dπ
[∑

a

π′(s, a)Aπ(s, a)

]
+
∑

s

(dπ
′
(s)− dπ(s))︸ ︷︷ ︸

?©

∑

a

π′(s, a)Aπ(s, a)

≥ Es∼dπ
[∑

a

π′(s, a)Aπ(s, a)− γε

(1− γ)2
DTV (π′‖π)[s]

]

where ε = max
s

∣∣Ea∼π′ [Aπ(s, a)]
∣∣ and

DTV (π′‖π)[s] =
∑

a

|π′(s, a)− π(s, a)|

Surrogate Loss 69

Lπ(π′) = J(π) +
∑

s

dπ(s)
∑

a

π′(s, a)Aπ(s, a)

−
∑

s

dπ(s)
γε

(1− γ)2
DTV (π′‖π)[s]

Lπ(π) = J(π)

If parametric policies π = πθ, ∇θLπθ(πθ) = ∇θJ(πθ)

U in an interval close to π, Lπ is a good surrogate for J

=⇒ Conservative Policy Iteration [Kakade and Langford, 2002]

(fig)

Surrogate Loss 69

Lπ(π′) = J(π) +
∑

s

dπ(s)
∑

a

π′(s, a)Aπ(s, a) −
∑

s

dπ(s)
γε

(1− γ)2
DTV (π′‖π)[s]

Lπ(π) = J(π)

If parametric policies π = πθ, ∇θLπθ(πθ) = ∇θJ(πθ)

U in an interval close to π, Lπ is a good surrogate for J

=⇒ Conservative Policy Iteration [Kakade and Langford, 2002]

also with this

(fig)

Conservative Policy Iteration
70

New policy improvement schema
- Give current policy πk solve

max
π′

{
Lπk(π′)−C Es∼dπ

[
DTV (π′‖πk)[s]

]}

=⇒ Monotonic performance improvement

Several approaches have been proposed [e.g., Kakade and Langford, 2002, Perkins and Precup,
2002, Gabillon et al., 2011, Wagner, 2011, 2013, Pirotta et al., 2013b, Scherrer et al., 2015, Schulman
et al., 2015]

Conservative Policy Iteration
70

New policy improvement schema
- Give current policy πk solve

max
π′

{
Lπk(π′)−C Es∼dπ

[
DTV (π′‖πk)[s]

]}
≥ 0

=⇒ Monotonic performance improvement

Several approaches have been proposed [e.g., Kakade and Langford, 2002, Perkins and Precup,
2002, Gabillon et al., 2011, Wagner, 2011, 2013, Pirotta et al., 2013b, Scherrer et al., 2015, Schulman
et al., 2015]

Conservative Policy Iteration
70

New policy improvement schema
- Give current policy πk solve

J(π′)− J(πk) ≥ max
π′

{
Lπk(π′)−C Es∼dπ

[
DTV (π′‖πk)[s]

]}
≥ 0

=⇒ Monotonic performance improvement

Several approaches have been proposed [e.g., Kakade and Langford, 2002, Perkins and Precup,
2002, Gabillon et al., 2011, Wagner, 2011, 2013, Pirotta et al., 2013b, Scherrer et al., 2015, Schulman
et al., 2015]

Conservative Policy Iteration
70

New policy improvement schema
- Give current policy πk solve

J(π′)− J(πk) ≥ max
π′

{
Lπk(π′)−C Es∼dπ

[
DTV (π′‖πk)[s]

]}
≥ 0

=⇒ Monotonic performance improvement

Several approaches have been proposed [e.g., Kakade and Langford, 2002, Perkins and Precup,
2002, Gabillon et al., 2011, Wagner, 2011, 2013, Pirotta et al., 2013b, Scherrer et al., 2015, Schulman
et al., 2015]

Conservative Policy Iteration
70

New policy improvement schema
- Give current policy πk solve

J(π′)− J(πk) ≥ max
π′

{
Lπk(π′)−C Es∼dπ

[
DTV (π′‖πk)[s]

]}
≥ 0

=⇒ Monotonic performance improvement

Several approaches have been proposed [e.g., Kakade and Langford, 2002, Perkins and Precup,
2002, Gabillon et al., 2011, Wagner, 2011, 2013, Pirotta et al., 2013b, Scherrer et al., 2015, Schulman
et al., 2015]

Approximate Monotone Improvement 71

The objective can be estimated using rollouts from the most recent policy
Updates respect a notion of distance in the policy space!

This is the basis for many algorithms!

How to solve the optimization problem?
72

max
π′

{
Lπk(π′)− C Es∼dπ

[
DTV (π′‖πk)[s]

]}

In discrete MDP with convex policy update

πk+1 = απ + (1− α)πk

where π is the greedy policy

=⇒ closed form solution for α
=⇒ guaranteed improvement

How to solve the optimization problem?
72

max
π′

{
Lπk(π′)− C Es∼dπ

[
DTV (π′‖πk)[s]

]}

In discrete MDP with convex policy update

πk+1 = απ + (1− α)πk

where π is the greedy policy

=⇒ closed form solution for α
=⇒ guaranteed improvement

Conservative in Continuous MDPs 73

Consider parametrized policies θ 7→ πθ

Construct a lower bound to J(θ + ∆θ)− J(θ)
- e.g., [Pirotta et al., 2013, Papini et al., 2017]

If Πθ is a smoothing policy class [Papini et al., 2019]
(as a consequence of quadratic bound for L-smooth functions)

∀θ, θ′ J(θ′)− J(θ) ≥ (θ′ − θ)T∇θJ(θ)− L

2
‖θ′ − θ‖22

= α‖∇θJ(θ)‖22 − α2L

2
‖∇θJ(θ)‖22

by using gradient update rule θ′ = θ + α∇θJ(θ)

=⇒ α? =
1

L
=⇒ Monotonic policy performance improvement

Conservative in Continuous MDPs 73

Consider parametrized policies θ 7→ πθ

Construct a lower bound to J(θ + ∆θ)− J(θ)
- e.g., [Pirotta et al., 2013, Papini et al., 2017]

If Πθ is a smoothing policy class [Papini et al., 2019]
(as a consequence of quadratic bound for L-smooth functions)

∀θ, θ′ J(θ′)− J(θ) ≥ (θ′ − θ)T∇θJ(θ)− L

2
‖θ′ − θ‖22

= α‖∇θJ(θ)‖22 − α2L

2
‖∇θJ(θ)‖22

by using gradient update rule θ′ = θ + α∇θJ(θ)

=⇒ α? =
1

L
=⇒ Monotonic policy performance improvement

Conservative in Continuous MDPs 73

Consider parametrized policies θ 7→ πθ

Construct a lower bound to J(θ + ∆θ)− J(θ)
- e.g., [Pirotta et al., 2013, Papini et al., 2017]

If Πθ is a smoothing policy class [Papini et al., 2019]
(as a consequence of quadratic bound for L-smooth functions)

∀θ, θ′ J(θ′)− J(θ) ≥ (θ′ − θ)T∇θJ(θ)− L

2
‖θ′ − θ‖22

= α‖∇θJ(θ)‖22 − α2L

2
‖∇θJ(θ)‖22

by using gradient update rule θ′ = θ + α∇θJ(θ)

=⇒ α? =
1

L
=⇒ Monotonic policy performance improvement

Conservative in Continuous MDPs 73

Consider parametrized policies θ 7→ πθ

Construct a lower bound to J(θ + ∆θ)− J(θ)
- e.g., [Pirotta et al., 2013, Papini et al., 2017]

If Πθ is a smoothing policy class [Papini et al., 2019]
(as a consequence of quadratic bound for L-smooth functions)

∀θ, θ′ J(θ′)− J(θ) ≥ (θ′ − θ)T∇θJ(θ)− L

2
‖θ′ − θ‖22

= α‖∇θJ(θ)‖22 − α2L

2
‖∇θJ(θ)‖22

by using gradient update rule θ′ = θ + α∇θJ(θ)

=⇒ α? =
1

L
=⇒ Monotonic policy performance improvement

Conservative Approaches: Approximation
74

Can be extended to handle approximate estimate

‖A(s, a)− Â(s, a)‖ ≤ ε and/or ‖∇J(θ)− ∇̂J(θ)‖ ≤ ε

Need to change the stopping condition to account for the finite-sample error

Example: ∇̂NJ(θ) estimate of the gradient using N trajectories. Then whp

‖∇J(θ)− ∇̂NJ(θ)‖ ≤ εδ√
N

As a consequence, whp

J(θ′)− J(θ) ≥ α
(
‖∇θJ(θ)‖22 −

ε2δ
N

)
− α2L

2
‖∇θJ(θ)‖22

+ possibility to adapt also N

Conservative Approaches: Approximation
74

Can be extended to handle approximate estimate

‖A(s, a)− Â(s, a)‖ ≤ ε and/or ‖∇J(θ)− ∇̂J(θ)‖ ≤ ε

Need to change the stopping condition to account for the finite-sample error

Example: ∇̂NJ(θ) estimate of the gradient using N trajectories. Then whp

‖∇J(θ)− ∇̂NJ(θ)‖ ≤ εδ√
N

As a consequence, whp

J(θ′)− J(θ) ≥ α
(
‖∇θJ(θ)‖22 −

ε2δ
N

)
− α2L

2
‖∇θJ(θ)‖22

+ possibility to adapt also N

Conservative Approaches: Approximation
74

Can be extended to handle approximate estimate

‖A(s, a)− Â(s, a)‖ ≤ ε and/or ‖∇J(θ)− ∇̂J(θ)‖ ≤ ε

Need to change the stopping condition to account for the finite-sample error

Example: ∇̂NJ(θ) estimate of the gradient using N trajectories. Then whp

‖∇J(θ)− ∇̂NJ(θ)‖ ≤ εδ√
N

As a consequence, whp

J(θ′)− J(θ) ≥ α
(
‖∇θJ(θ)‖22 −

ε2δ
N

)
− α2L

2
‖∇θJ(θ)‖22

+ possibility to adapt also N

Toward Practical Algorithm
75

Optimizing the total variation DTV (π′‖π) may be difficult

Relax the problem using Pinsker’s inequality [Csiszar and Körner, 2011]

DTV (π′‖π) ≤
√

2DKL(π′‖π)

∗ implicitly done in the analysis of conservative gradient

Kullback–Leibler divergence
76

Given two probability distributions P and Q

DKL(P‖Q) =
∑

x

P (x) log
P (x)

Q(x)

Properties:
DKL(P‖Q) ≥ 0

DKL(Q‖Q) = 0

DKL(P‖Q) 6= DKL(Q‖P) (non-symmetric)
No triangle inequality

Note: Réni divergences provide generalizations of the KL divergence

Further Steps toward Practical Algorithms
77

C provided by theory is quite high (too conservartive)
Replace regularization with constraint (trust region) (e.g., REPS [Peters et al., 2010])

πk+1 = arg max
π′

Lπ(π′)

s.t. Es∼dπ [DKL(π′‖π)] ≤ δ

Importance weighting

Es∼dπEa∼π′ [Aπ(s, a)] = Es∼dπEa∼z
[
π′(s, a)

z(s, a)
Aπ(s, a)

]

Replace Aπ with qπ and remove J(π)

πk+1 = arg max
π′

Es∼dπEa∼z
[
π′(s, a)

z(s, a)
qπ(s, a)

]

s.t. Es∼dπ [DKL(π′‖π)] ≤ δ
=⇒ Trust-Region Policy Optimization (TRPO) [Schulman et al., 2015]

Further Steps toward Practical Algorithms
77

C provided by theory is quite high (too conservartive)
Replace regularization with constraint (trust region) (e.g., REPS [Peters et al., 2010])

πk+1 = arg max
π′

Lπ(π′)

s.t. Es∼dπ [DKL(π′‖π)] ≤ δ

Importance weighting

Es∼dπEa∼π′ [Aπ(s, a)] = Es∼dπEa∼z
[
π′(s, a)

z(s, a)
Aπ(s, a)

]

Replace Aπ with qπ and remove J(π)

πk+1 = arg max
π′

Es∼dπEa∼z
[
π′(s, a)

z(s, a)
qπ(s, a)

]

s.t. Es∼dπ [DKL(π′‖π)] ≤ δ
=⇒ Trust-Region Policy Optimization (TRPO) [Schulman et al., 2015]

Further Steps toward Practical Algorithms
77

C provided by theory is quite high (too conservartive)
Replace regularization with constraint (trust region) (e.g., REPS [Peters et al., 2010])

πk+1 = arg max
π′

Lπ(π′)

s.t. Es∼dπ [DKL(π′‖π)] ≤ δ

Importance weighting

Es∼dπEa∼π′ [Aπ(s, a)] = Es∼dπEa∼z
[
π′(s, a)

z(s, a)
Aπ(s, a)

]

Replace Aπ with qπ and remove J(π)

πk+1 = arg max
π′

Es∼dπEa∼z
[
π′(s, a)

z(s, a)
qπ(s, a)

]

s.t. Es∼dπ [DKL(π′‖π)] ≤ δ
=⇒ Trust-Region Policy Optimization (TRPO) [Schulman et al., 2015]

Beyond Simple Gradient Descent

Gradient Descent
79

Steepest descent direction of a function h(θ) → −∇h(θ)

It yields the most reduction in h per unit of change in θ
Change is measured using the standard Euclidean norm ‖ · ‖

−∇h
‖∇h‖ = lim

ε→0

1

ε
arg min
d:‖d‖≤ε

{h(θ + d)}

Is the Euclidean norm the best metric?
Can we use an alternative definition of (local) distance?

=⇒ as suggested by [Amari, 1998] it is better to define a metric based not on the
choice of the coordinates but rather on the manifold these coordinates parametrize!

(Example: gradient descent is not affine invariant)

Gradient Descent
79

Steepest descent direction of a function h(θ) → −∇h(θ)

It yields the most reduction in h per unit of change in θ
Change is measured using the standard Euclidean norm ‖ · ‖

−∇h
‖∇h‖ = lim

ε→0

1

ε
arg min
d:‖d‖≤ε

{h(θ + d)}

Is the Euclidean norm the best metric?
Can we use an alternative definition of (local) distance?

=⇒ as suggested by [Amari, 1998] it is better to define a metric based not on the
choice of the coordinates but rather on the manifold these coordinates parametrize!

(Example: gradient descent is not affine invariant)

Gradient Descent
79

Steepest descent direction of a function h(θ) → −∇h(θ)

It yields the most reduction in h per unit of change in θ
Change is measured using the standard Euclidean norm ‖ · ‖

−∇h
‖∇h‖ = lim

ε→0

1

ε
arg min
d:‖d‖≤ε

{h(θ + d)}

Is the Euclidean norm the best metric?
Can we use an alternative definition of (local) distance?

=⇒ as suggested by [Amari, 1998] it is better to define a metric based not on the
choice of the coordinates but rather on the manifold these coordinates parametrize!

(Example: gradient descent is not affine invariant)

Natural Gradient
80

In Riemannian space, the distance is defined as

d2(v, v + δv) = δvTG(v)δvT

where G is the metric tensor

Example: consider the Euclidean space (R2)
Cartesian coordinate, the metric tensor is the identity
Polar coordinate

x = r cos θ =⇒ δx = δr cos θ − rδθ sin θ

y = r sin θ =⇒ δy = δr sin θ + rδθ cos θ

d2(v, v + δv) = δx2 + δy2

= δr2 + r2δθ2

= (δr, δθ)Tdiag(1, r2)(δr, δθ)

Natural Gradient
80

In Riemannian space, the distance is defined as

d2(v, v + δv) = δvTG(v)δvT

where G is the metric tensor

Example: consider the Euclidean space (R2)
Cartesian coordinate, the metric tensor is the identity
Polar coordinate

x = r cos θ =⇒ δx = δr cos θ − rδθ sin θ

y = r sin θ =⇒ δy = δr sin θ + rδθ cos θ

d2(v, v + δv) = δx2 + δy2

= δr2 + r2δθ2

= (δr, δθ)Tdiag(1, r2)(δr, δθ)

Natural Gradient
81

Natural Gradient [Amari, 1998]

The steepest descent in a Riemannian is given by

∇̃h(θ) = G(θ)−1∇h(θ)

Natural gradient can be applied to any objective function
Issue: what is the metric tensor?

known for many objectives!

Maximum Likelihood: we have a probabilistic model represented by its likelihood p(x|θ)
We want to maximize this likelihood function to find the most likely parameter

Natural Gradient
81

Natural Gradient [Amari, 1998]

The steepest descent in a Riemannian is given by

∇̃h(θ) = G(θ)−1∇h(θ)

Natural gradient can be applied to any objective function
Issue: what is the metric tensor?

known for many objectives!

Maximum Likelihood: we have a probabilistic model represented by its likelihood p(x|θ)
We want to maximize this likelihood function to find the most likely parameter

Natural Gradient
81

Natural Gradient [Amari, 1998]

The steepest descent in a Riemannian is given by

∇̃h(θ) = G(θ)−1∇h(θ)

Natural gradient can be applied to any objective function
Issue: what is the metric tensor?

known for many objectives!

Maximum Likelihood: we have a probabilistic model represented by its likelihood p(x|θ)
We want to maximize this likelihood function to find the most likely parameter

Natural Gradient
81

Natural Gradient [Amari, 1998]

The steepest descent in a Riemannian is given by

∇̃h(θ) = G(θ)−1∇h(θ)

Natural gradient can be applied to any objective function
Issue: what is the metric tensor?

known for many objectives!

Maximum Likelihood: we have a probabilistic model represented by its likelihood p(x|θ)
We want to maximize this likelihood function to find the most likely parameter

Example
82

Consider a Gaussian parameterized by only its mean and keep the variance fixed to 2
and 0.5 for the first and second image respectively

The distance of those Gaussians are the same, i.e. 4, according to Euclidean metric
(red line)
https://wiseodd.github.io/techblog/2018/03/14/natural-gradient/

https://wiseodd.github.io/techblog/2018/03/14/natural-gradient/

Fisher Information Matrix
83

F = E
x∼p(·|θ)

[
∇ log p(x|θ)∇ log p(x|θ)T

]

Property 1: Fisher Information Matrix is the Hessian of KL-divergence between two
distributions p(x|θ) and p(x|θ′), with respect to θ′, evaluated at θ = θ′

HDKL(p(x|θ)‖p(x|θ′)) = F

Property 2: Second-order Taylor series expansion

DKL(p(x|θ)‖p(x|θ + d)) = dTFd+O(d3)

(proofs)

Fisher Information Matrix
83

F = E
x∼p(·|θ)

[
∇ log p(x|θ)∇ log p(x|θ)T

]

Property 1: Fisher Information Matrix is the Hessian of KL-divergence between two
distributions p(x|θ) and p(x|θ′), with respect to θ′, evaluated at θ = θ′

HDKL(p(x|θ)‖p(x|θ′)) = F

Property 2: Second-order Taylor series expansion

DKL(p(x|θ)‖p(x|θ + d)) = dTFd+O(d3)

(proofs)

Natural Gradient in ML
[Martens, 2014]

84

For a positive definite matrix A, we have [Ollivier et al., 2017] (def. ‖x‖B =
√
xTBx)

−A−1∇h
‖∇h‖A−1

= lim
ε→0

1

ε
arg min
d:‖d‖A−1≤ε

{h(θ + d)}

A =
1

2
F =⇒ −

√
2
∇̃h

‖∇h‖F−1

= lim
ε→0

1

ε
arg min

d:DKL(p(x|θ)‖p(x|θ+d))≤ε2
{h(θ + d)}

Negative natural gradient
steepest descent direction in the space of distributions
where distance is (approximately) measured in local neighborhoods by the KL
divergence

U DKL(p(x|θ)‖p(x|θ + d)) is locally/asymptotically symmetric as d→ 0,
and so will be (approximately) symmetric in a local neighborhood [Martens, 2014]

U ∇̃h is be invariant to the choice of parameterization

Natural Gradient in ML
[Martens, 2014]

84

For a positive definite matrix A, we have [Ollivier et al., 2017] (def. ‖x‖B =
√
xTBx)

−A−1∇h
‖∇h‖A−1

= lim
ε→0

1

ε
arg min
d:‖d‖A−1≤ε

{h(θ + d)}

A =
1

2
F =⇒ −

√
2
∇̃h

‖∇h‖F−1

= lim
ε→0

1

ε
arg min

d:DKL(p(x|θ)‖p(x|θ+d))≤ε2
{h(θ + d)}

Negative natural gradient
steepest descent direction in the space of distributions
where distance is (approximately) measured in local neighborhoods by the KL
divergence

U DKL(p(x|θ)‖p(x|θ + d)) is locally/asymptotically symmetric as d→ 0,
and so will be (approximately) symmetric in a local neighborhood [Martens, 2014]

U ∇̃h is be invariant to the choice of parameterization

Natural Gradient in ML
[Martens, 2014]

84

For a positive definite matrix A, we have [Ollivier et al., 2017] (def. ‖x‖B =
√
xTBx)

−A−1∇h
‖∇h‖A−1

= lim
ε→0

1

ε
arg min
d:‖d‖A−1≤ε

{h(θ + d)}

A =
1

2
F =⇒ −

√
2
∇̃h

‖∇h‖F−1

= lim
ε→0

1

ε
arg min

d:DKL(p(x|θ)‖p(x|θ+d))≤ε2
{h(θ + d)}

Negative natural gradient
steepest descent direction in the space of distributions
where distance is (approximately) measured in local neighborhoods by the KL
divergence

U DKL(p(x|θ)‖p(x|θ + d)) is locally/asymptotically symmetric as d→ 0,
and so will be (approximately) symmetric in a local neighborhood [Martens, 2014]

U ∇̃h is be invariant to the choice of parameterization

Natural Policy Gradient
85

Trust-region objective

πk+1 = arg max
π′

Lπk(π′)

s.t. DKL(π′‖πk) ≤ δ

Approximate objective and KL

Lθk(θ) ≈ Lθk(θk) + gT(θ − θk)

DKL(θ‖θk) ≈
1

2
(θ − θk)TF (θ − θk)

=⇒

θk+1 = θk +

√
2δ

gTF−1g
F−1g︸ ︷︷ ︸
:=∇̃J

Algorithms [Kakade, 2002, Peters and Schaal, 2008a]

Truncated Natural Policy Gradient
86

Issues:
θ ∈ Rd, d can be very large (e.g., thousands or millions)
H or F have dimension d2

matrix inversion is O(d3)

Solution:
Use conjugate gradient to compute F−1g without inverting F [Pascanu and Bengio,
2013]

With j iterations, CG solves systems of equations Hx = g for x by finding
projection onto Krylov subspace (i.e., span(g,Hg, . . .Hj−1g))

=⇒ Truncated Natural Policy Gradient
Other solutions are possible: see ACKTR [Wu et al., 2017], [Ollivier, 2017]

Truncated Natural Policy Gradient
86

Issues:
θ ∈ Rd, d can be very large (e.g., thousands or millions)
H or F have dimension d2

matrix inversion is O(d3)

Solution:
Use conjugate gradient to compute F−1g without inverting F [Pascanu and Bengio,
2013]

With j iterations, CG solves systems of equations Hx = g for x by finding
projection onto Krylov subspace (i.e., span(g,Hg, . . .Hj−1g))

=⇒ Truncated Natural Policy Gradient

Other solutions are possible: see ACKTR [Wu et al., 2017], [Ollivier, 2017]

Truncated Natural Policy Gradient
86

Issues:
θ ∈ Rd, d can be very large (e.g., thousands or millions)
H or F have dimension d2

matrix inversion is O(d3)

Solution:
Use conjugate gradient to compute F−1g without inverting F [Pascanu and Bengio,
2013]

With j iterations, CG solves systems of equations Hx = g for x by finding
projection onto Krylov subspace (i.e., span(g,Hg, . . .Hj−1g))

=⇒ Truncated Natural Policy Gradient
Other solutions are possible: see ACKTR [Wu et al., 2017], [Ollivier, 2017]

Example: Walker-2d
87

[Duan et al., 2016]

Discussion 88

Natural gradient contains second order informations
Newton method?

The Hessian [Furmston and Barber, 2012, Shen et al., 2019]

∇2J(θ) = Eτ
[
∇g(θ, τ)∇ logP(τ |θ)T +∇2g(θ, τ)

]

with

g(θ, τ) =
H∑

h=1

H∑

i=h

γir(si, ai) log πθ(sh, ah)

Discussion 88

Natural gradient contains second order informations
Newton method?

The Hessian [Furmston and Barber, 2012, Shen et al., 2019]

∇2J(θ) = Eτ
[
∇g(θ, τ)∇ logP(τ |θ)T +∇2g(θ, τ)

]

with

g(θ, τ) =
H∑

h=1

H∑

i=h

γir(si, ai) log πθ(sh, ah)

Discussion 89

[Furmston and Barber, 2012] noticed a connection between E[∇2g(θ, τ)] and the FIM!
This hessian can be estimated using first-order information (leading to quasi
Newton approaches) or finite difference

- see [Shen et al., 2019] also for sample complexity

REINFORCE find an ε-approximate first-order stationary point in O(1/ε4)
Hessian aided policy gradient method [Shen et al., 2019] sample complexity of

O(1/ε3)

Proximal Policy Optimization
[Schulman et al., 2017b]

90

Avoid to compute the natural gradient
Approximate the KL constraint

1 Adaptive KL Penalty
• Consider regularized optimization problem

θk+1 = arg max
θ

Lθk(θ)− λkE[DKL(θ‖θk)]

• Adapt λk to enforce KL constraint

λk+1 =





2λk if E[DKL(θ‖θk)] ≥ 1.5δ

λk/2 if E[DKL(θ‖θk)] ≤ δ/1.5
λk otherwise

Proximal Policy Optimization
[Schulman et al., 2017b]

90

Avoid to compute the natural gradient
Approximate the KL constraint

1 Adaptive KL Penalty
• Consider regularized optimization problem

θk+1 = arg max
θ

Lθk(θ)− λkE[DKL(θ‖θk)]

• Adapt λk to enforce KL constraint

λk+1 =





2λk if E[DKL(θ‖θk)] ≥ 1.5δ

λk/2 if E[DKL(θ‖θk)] ≤ δ/1.5
λk otherwise

Proximal Policy Optimization
[Schulman et al., 2017b]

91

2 Clipped Objective
• Recall surrogate objective

LIS
π (π′) = Es∼dπEa∼π

[
π′(s, a)

π(s, a)
Aπ(s, a)

]
= Es∼dπEa∼π [rsa(π′)Aπ(s, a)]

• Form a lower bound via clipped importance ratios

LCLIP
π (π′) = Es∼dπEa∼π [min {rsa(π′)Aπ(s, a), clip(rsa(π′), 1− ε, 1 + ε)Aπ(s, a)}]

• πk+1 = arg max
π

LCLIP
πk

(π)

Proximal Policy Optimization
[Schulman et al., 2017b]

92

Clipping prevents policy from moving too much away from θk

Seems to work as well as PPO with KL penalty
Much simpler to implement

How does it work?

Various objectives as a function of function of α between θk and θk+1

Non-Parametric Policy Update
94

Solve a constrained optimization problem in a non-parameterized policy space
Fit a parametric policy on the best non-parametric policy

=⇒ Supervised Policy Update [Vuong et al., 2019]

1 Sample N trajectories using policy πθk
- construct dataset (si, ai, Ai) where Ai ≈ Aπk(si, ai)

2 For each si solve the constrained optimization problem
- obtain a non-parametric policy π̃ defined in each sample si

3 Fit a parametric policy πθk+1
on π

min
θ

{
L(θ) =

1

m

m∑

i=1

DKL(πθ‖π̃)[si]

}

Non-Parametric Policy Update
94

Solve a constrained optimization problem in a non-parameterized policy space
Fit a parametric policy on the best non-parametric policy

=⇒ Supervised Policy Update [Vuong et al., 2019]

1 Sample N trajectories using policy πθk
- construct dataset (si, ai, Ai) where Ai ≈ Aπk(si, ai)

2 For each si solve the constrained optimization problem
- obtain a non-parametric policy π̃ defined in each sample si

3 Fit a parametric policy πθk+1
on π

min
θ

{
L(θ) =

1

m

m∑

i=1

DKL(πθ‖π̃)[si]

}

Non-Parametric Policy Update
95

Example: TRPO optimization problem
Almost closed form solution (up to parameters λ = f(δ, ε))

π̃(s, a) ∝ πθk(s, a) exp

[
Aπθk (s, a)

λ

]

Then (approximately)

L(θ) ≈ 1

m

m∑

i=1


∇θDKL(πθ‖πθk)[si]︸ ︷︷ ︸

policy deviation

− 1

λ

∇θπθ(si, ai)
πθk(si, ai)

Ai
︸ ︷︷ ︸

approximate performance


1 (DKL(πθ‖πθk)[si] ≤ ε)

U minimize by gradient descent and consider λ to be a parameter!
still an actor-critic approach!

Not really a novel idea =⇒ Classification-based PI

Non-Parametric Policy Update
95

Example: TRPO optimization problem
Almost closed form solution (up to parameters λ = f(δ, ε))

π̃(s, a) ∝ πθk(s, a) exp

[
Aπθk (s, a)

λ

]

Then (approximately)

L(θ) ≈ 1

m

m∑

i=1


∇θDKL(πθ‖πθk)[si]︸ ︷︷ ︸

policy deviation

− 1

λ

∇θπθ(si, ai)
πθk(si, ai)

Ai
︸ ︷︷ ︸

approximate performance


1 (DKL(πθ‖πθk)[si] ≤ ε)

U minimize by gradient descent and consider λ to be a parameter!
still an actor-critic approach!

Not really a novel idea =⇒ Classification-based PI

Non-Parametric Policy Update
95

Example: TRPO optimization problem
Almost closed form solution (up to parameters λ = f(δ, ε))

π̃(s, a) ∝ πθk(s, a) exp

[
Aπθk (s, a)

λ

]

Then (approximately)

L(θ) ≈ 1

m

m∑

i=1


∇θDKL(πθ‖πθk)[si]︸ ︷︷ ︸

policy deviation

− 1

λ

∇θπθ(si, ai)
πθk(si, ai)

Ai
︸ ︷︷ ︸

approximate performance


1 (DKL(πθ‖πθk)[si] ≤ ε)

U minimize by gradient descent and consider λ to be a parameter!
still an actor-critic approach!

Not really a novel idea =⇒ Classification-based PI

Non-Parametric Policy Update
95

Example: TRPO optimization problem
Almost closed form solution (up to parameters λ = f(δ, ε))

π̃(s, a) ∝ πθk(s, a) exp

[
Aπθk (s, a)

λ

]

Then (approximately)

L(θ) ≈ 1

m

m∑

i=1


∇θDKL(πθ‖πθk)[si]︸ ︷︷ ︸

policy deviation

− 1

λ

∇θπθ(si, ai)
πθk(si, ai)

Ai
︸ ︷︷ ︸

approximate performance


1 (DKL(πθ‖πθk)[si] ≤ ε)

U minimize by gradient descent and consider λ to be a parameter!
still an actor-critic approach!

Not really a novel idea =⇒ Classification-based PI

Classification-based Policy Iteration (RCPI)
96

replaces the policy evaluation step with computing rollout estimates of qπ

D = {xi}Ni=1 7→ q̂π

casts the policy improvement step as a classification problem
- find a policy in a given hypothesis space that best predicts the greedy action at
every (observed) state

min
π∈Π

1

N

N∑

i=1

(
max
a

q̂πk(si, a)− q̂πk(si, π(si))
)

Classification-based approaches: [Lagoudakis and Parr, 2003b, Fern et al., 2003, Dimitrakakis and
Lagoudakis, 2008, Lazaric et al., 2012, Gabillon et al., 2011]

Classification-based Policy Iteration with Critic
[Gabillon et al., 2011]

97

Estimate the return of a state-action pair as

Rπkj (si, a) = Rπk,Hj (si, a)
︸ ︷︷ ︸
H−horizon rollout

+ γH v̂πk(sHij)
︸ ︷︷ ︸
bostrapping

with

Rπk,Hj (si, a) = r(si, a) +

H−1∑

t=1

γtr(xtij , πk(x
t
ij))

Then

q̂πk(si, a) =
1

m

m∑

j=1

Rπkj (si, a)

Discussion 98

Key components:
1 Stochastic policies
2 Regularized or constrained optimization

What are the motivations
Exploration
Controlling the deviation
Differentiability of Bellman operator

So far regularization was coming from lower bound to the performance
Can we analyse it independently?

Stochastic vs. Deterministic Policies
99

JD(π) = Es∼dπ [r(s, π(s))]

Deterministic Policy Gradient

∇θJD(θ) =
∑

s

dπ(s)∇θπθ(s)∇aqπ(s, a)|a=πθ(s)

= Es∼dπ [∇θπθ(s)∇aqπ(s, a)|a=πθ(s)]

Issues:
We need to be able to differentiate the model
Explicitly force exploration at the level of actions

Stochastic vs. Deterministic Policies
100

Plug it into an actor-critic framework
=⇒ Use TD(0) to update a parametric representation of qπ

δt = Rt + γQw(st+1, at+1)−Qw(st, at) ; TD error in SARSA

wt+1 = wt + αwδt∇wQw(st, at)

θt+1 = θt + αθ∇aQw(st, at)∇θµθ(s)|a=µθ(s) ; Deterministic policy gradient theorem

Softmax Operator
101

v?(s) = max
a

{
r(s, a) + γ

∑

y

p(y|s, a)v?(y)

}

replace max with “softmax” operator

v?(s) =
1

η
log

(∑

a

exp

[
η

(
r(s, a) + γ

∑

y

p(y|s, a)v?(y)

)])

[Marcus et al., 1997, Ruszczyński, 2010, Ziebart et al., 2010, Ziebart, 2010, Braun et al., 2011, Azar et al.,

2012, Rawlik et al., 2012, Fox et al., 2016, Asadi and Littman, 2017, Haarnoja et al., 2017, Schulman et al.,

2017, Nachum et al., 2017]

Entropy Regularization
102

max
π

{
J(π) = E

[
+∞∑

t=1

γt−1rt + αΩ(π(st, ·))
]}

The two approaches are connected by Lagrangian duality when

Ω(π(s, ·)) =
∑

a

π(s, a) log π(s, a) negative entropy

Results: [Neu et al., 2017]

Existence and uniqueness
Well-defined contractive DP operator
Policy Gradient Theorem

Entropy Regularization
102

max
π

{
J(π) = E

[
+∞∑

t=1

γt−1rt + αΩ(π(st, ·))
]}

The two approaches are connected by Lagrangian duality when

Ω(π(s, ·)) =
∑

a

π(s, a) log π(s, a) negative entropy

Results: [Neu et al., 2017]

Existence and uniqueness
Well-defined contractive DP operator
Policy Gradient Theorem

Entropy Regularization
103

Optimal policy:

π?(s, a) ∝ exp
[
η
(
r(s, a) + γE′s[v?(s′)]

)]

Note:

qπ(s, a) = r(s, a) + γ
∑

y

p(y|s, a)vπ(y)

vπ(s) = Ea∼π[qπ(s, a)]− Ω(π(s, ·))

Soft-Actor Critic
104

1 Train the value function v

arg min
ψ

∈ Est∼H
[

1

2

(
vψ(st) + Eat∼πφ [qθ(st, at)− log πφ(st, at)]

)2
]

2 Train the action-value function qπ

arg min
θ

E(s,a)∈H

[
1

2

(
qθ(st, at)− (r(st, at) + γE[vψ(s′)])

)2
]

! fix the target network (e.g., DQN) → increase stability / break dependences
3 Fit the new policy

arg min
φ

Es∈H
[
DKL(πψ‖ exp[ηqψ]/Z)[s]

]

Path-Consistency Learning
[Nachum et al., 2017]

105

Suppose the MDP is deterministic (otherwise take a conditional expectation w.r.t. to
history)

For any v?, π? optimizing the regularized objective

v?(s)− γv?(s′) = r(s, a)− η log π?(s, a)

v?(s1)− γt−1v?(st) =

t−1∑

t=1

γi−1 (r(si, ai)− η log π?(si, ai))

U if (π, v) satisfies the path consistency for every (s, a), then π = π? and v = v?

Path-Consistency Learning
106

Maintain two sets of parameters (φ, θ): θ 7→ πθ, φ 7→ vφ
Minimize the consistency error

min
φ,θ

OPCL(φ, θ,H) =
∑

si:i+d∈EH

1

2
C(si:i+d, φ, θ)

2

where EH is the set of (sub)trajectories and

C(si:i+d, φ, θ) = −vφ(si) + γdvφ(si+d) +

d−1∑

j=0

γj (r(si+j , ai+j)− η log πθ(sa+j , ai+j))

In practice:
Use replay buffer
Update incrementally =⇒ semi-batch

Can be extended to different regularizers (e.g., Shannon entropy, Tsallis entropy [Chow
et al., 2018])

Path-Consistency Learning
106

Maintain two sets of parameters (φ, θ): θ 7→ πθ, φ 7→ vφ
Minimize the consistency error

min
φ,θ

OPCL(φ, θ,H) =
∑

si:i+d∈EH

1

2
C(si:i+d, φ, θ)

2

where EH is the set of (sub)trajectories and

C(si:i+d, φ, θ) = −vφ(si) + γdvφ(si+d) +

d−1∑

j=0

γj (r(si+j , ai+j)− η log πθ(sa+j , ai+j))

In practice:
Use replay buffer
Update incrementally =⇒ semi-batch

Can be extended to different regularizers (e.g., Shannon entropy, Tsallis entropy [Chow
et al., 2018])

Path-Consistency Learning
106

Maintain two sets of parameters (φ, θ): θ 7→ πθ, φ 7→ vφ
Minimize the consistency error

min
φ,θ

OPCL(φ, θ,H) =
∑

si:i+d∈EH

1

2
C(si:i+d, φ, θ)

2

where EH is the set of (sub)trajectories and

C(si:i+d, φ, θ) = −vφ(si) + γdvφ(si+d) +

d−1∑

j=0

γj (r(si+j , ai+j)− η log πθ(sa+j , ai+j))

In practice:
Use replay buffer
Update incrementally =⇒ semi-batch

Can be extended to different regularizers (e.g., Shannon entropy, Tsallis entropy [Chow
et al., 2018])

Regularized Markov Decision Processes
[Geist et al., 2019]

107

Bellman operator

Lπv(s) =
∑

a

π(s, a)

(
r(s, a) + γ

∑

y

p(y|s, a)vπ(y)

)
=
∑

a

π(s, a)qπ(s, a)

Optimal Bellman operator

L?v(s) = max
a

{
r(s, a) + γ

∑

y

p(y|s, a)v?(y)

}

Greedy policy
L?v = Lπ′v ⇐⇒ π′ ∈ arg max

π
Lπv

Regularized Markov Decision Processes
108

Regularizer
Ω : P(A)→ S strongly convex function

Legendre-Fenchel transform (or convex conjugate)

Ω? : RA → R

∀q ∈ RA, Ω?(q) = max
z∈P(A)

{∑

s

z(a)q(a)− Ω(z)

}

Property of strongly convex functions: unique maximizing argument

∇Ω? is Lipschitz and ∇Ω?(q) = arg max
z∈P(A)

{∑

s

z(a)q(a)− Ω(z)

}

Regularized Markov Decision Processes
108

Regularizer
Ω : P(A)→ S strongly convex function

Legendre-Fenchel transform (or convex conjugate)

Ω? : RA → R

∀q ∈ RA, Ω?(q) = max
z∈P(A)

{∑

s

z(a)q(a)− Ω(z)

}

Property of strongly convex functions: unique maximizing argument

∇Ω? is Lipschitz and ∇Ω?(q) = arg max
z∈P(A)

{∑

s

z(a)q(a)− Ω(z)

}

Regularized Markov Decision Processes
109

Examples:

Ω(π(s, ·)) Ω?(q(s, ·))
Negative entropy

∑

a

πs(a) log π(s, a) log
∑

a

exp q(s, a)

∇Ω?(q(s, ·)) =
exp q(s, a)∑
b exp q(s, b)

i.e., softmax

KL-divergence
between π and
uniform

∑

a

π(s, a) log π(s, a) + log(A) ln
∑

a

1

A
exp[[q(s, a)]

∇Ω? is Mellowmax [Asadi and Littman, 2017]
Tsallis entropy
(q = 2, k = 1/2)

1

2
(‖π(s, ·)‖22 − 1)

∇Ω? is the sparsemax [Chow et al., 2018]

Regularized Markov Decision Processes
110

Regularized Bellman operators w.r.t. Ω

LπΩv(s) = Lπv(s)− Ω(π(s, ·)) =
∑

a

π(s, a)qπ(s, a)− Ω(π(s, ·))

Regularized Optimal Bellman operators w.r.t. Ω

L?Ωv(s) = max
π

LπΩv[s] = Ω?(q(s, ·))

Greedy policy
π′ = GΩ(v) = ∇Ω?(q) ⇐⇒ Lπ

′
Ω v = L?Ωv

We have the usual properties for LπΩ: affine, monotonicity, distributivity, contraction

Regularized Markov Decision Processes
111

Regularized value functions: vπΩ = LπΩv
π
Ω

qπ(s, a) = r(s, a) + γ
∑

y

p(y|s, a)vπ(y)

vπ(s) = Ea∼π[qπ(s, a)]− Ω(π(s, ·))

Regularized optimal value functions: v?Ω = L?Ωv
?
Ω

q?Ω(s, a) = r(s, a) + γ
∑

y

p(y|s, a)v?Ω(y)

v?Ω(s) = Ω?(q?(s, ·))

Optimality
π?Ω = GΩ(v?Ω) is optimal

∀π, v
π?Ω
Ω = v?Ω ≥ vπΩ

Regularized Markov Decision Processes
112

This explains many recent algorithms
They can be seen as a particular instance of Modified Policy Iteration

πk+1 = GΩ(vk)

vk+1 = (L
πk+1

Ω)mvk

Up to modifications for make them practical

- Soft Q-learning with negative entropy [Fox et al., 2016, Schulman et al., 2017a] or Tsallis
entropy [Lee et al., 2018]

- SAC with entropic regularizer [Haarnoja et al., 2018]

- Algorithms based on path consistency [Nachum et al., 2017, Chow et al., 2018]

Regularized Markov Decision Processes
113

Issues:
Regularization as defined above is changing the objective
We obtain a different optimal policy
Should be an algorithm trick and not a change in the objective

- i.e., estimate the original optimal policy by solving
a series of regularized problems

Solution:
Consider a time varying regularized
Penalize the difference between policy π and the one at previous iteration (already
seen)

Regularized Markov Decision Processes
113

Issues:
Regularization as defined above is changing the objective
We obtain a different optimal policy
Should be an algorithm trick and not a change in the objective

- i.e., estimate the original optimal policy by solving
a series of regularized problems

Solution:
Consider a time varying regularized
Penalize the difference between policy π and the one at previous iteration (already
seen)

Regularized Markov Decision Processes
114

Bregman divergence

Ωπ′s(πs) = DΩ(πs‖π′s) = Ω(πs)− Ω(π′s)−∇Ω(π′)T(πs − π′s)

Example:
negative entropy =⇒ Ωπ′s(πs) = DKL(π‖π′)[s]

Policy Iteration improvement

πk+1 = GΩπk
(vk)

= arg max
π

∑

a

π(s, a)qk(s, a)−DΩ(π‖πk)

U similar to Mirror Descent in proximal form with −qk as gradient!
=⇒ estimates the original optimal policy

Regularized Markov Decision Processes
114

Bregman divergence

Ωπ′s(πs) = DΩ(πs‖π′s) = Ω(πs)− Ω(π′s)−∇Ω(π′)T(πs − π′s)

Example:
negative entropy =⇒ Ωπ′s(πs) = DKL(π‖π′)[s]

Policy Iteration improvement

πk+1 = GΩπk
(vk)

= arg max
π

∑

a

π(s, a)qk(s, a)−DΩ(π‖πk)

U similar to Mirror Descent in proximal form with −qk as gradient!
=⇒ estimates the original optimal policy

Regularized Markov Decision Processes
114

Bregman divergence

Ωπ′s(πs) = DΩ(πs‖π′s) = Ω(πs)− Ω(π′s)−∇Ω(π′)T(πs − π′s)

Example:
negative entropy =⇒ Ωπ′s(πs) = DKL(π‖π′)[s]

Policy Iteration improvement

πk+1 = GΩπk
(vk)

= arg max
π

∑

a

π(s, a)qk(s, a)−DΩ(π‖πk)

U similar to Mirror Descent in proximal form with −qk as gradient!
=⇒ estimates the original optimal policy

Regularized Markov Decision Processes
115

Common framework
Algorithms are either Mirror Descent or Dual Averaging [Neu et al., 2017]

TRPO can be seen as a mirror descent approach =⇒ guarantees of convergence
Similar interpretation (as dual averaging algorithm) for DPP [Azar et al., 2012] and
MPO [Abdolmaleki et al., 2018].

Regularized Policy Gradient
116

∇JΩ(π) =
∑

s

dπ(s)
∑

a

π(s, a)

(
qπΩ(s, a)− ∂Ω(π(s, ·)

∂π(s, a)

)
∇ log π(s, a)

Possible to replace with Bregman divergence =⇒ convergence to original policy

Resources 117

Reinforcement Learning
Books
• Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.

John Wiley & Sons, Inc., New York, NY, USA, 1994

• Richard S Sutton and Andrew G Barto. Introduction to reinforcement learning.
MIT press Cambridge, 2 edition, 2018

• Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, Vol. II.
Athena Scientific, 3rd edition, 2007

• Csaba Szepesvari. Algorithms for Reinforcement Learning.
Morgan and Claypool Publishers, 2010

Courses
• Sergey Levine. Cs 294: Deep reinforcement learning.

http://rail.eecs.berkeley.edu/deeprlcourse-fa17/index.html

• Emma Brunskill. Cs234 reinforcement learning winter 2019.
http://web.stanford.edu/class/cs234/index.html

• Alessandro Lazaric. Mva reinforcement learning.
http://chercheurs.lille.inria.fr/˜lazaric/Webpage/Teaching.html

• Alexandre Proutiere. Reinforcement learning: A graduate course.
http://www.it.uu.se/research/systems_and_control/education/2017/relearn/

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin Riedmiller.
Maximum a posteriori policy optimisation. arXiv preprint arXiv:1806.06920, 2018.

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–276, 1998.

Kavosh Asadi and Michael L. Littman. An alternative softmax operator for reinforcement learning. In ICML,
volume 70 of Proceedings of Machine Learning Research, pages 243–252. PMLR, 2017.

Mohammad Gheshlaghi Azar, Vicenç Gómez, and Hilbert J Kappen. Dynamic policy programming. Journal of
Machine Learning Research, 13(Nov):3207–3245, 2012.

Francis Bach. Stochastic optimization: Beyond stochastic gradients and convexity part i. 2016.

Leemon Baird. Residual algorithms: Reinforcement learning with function approximation. In Machine Learning
Proceedings 1995, pages 30–37. Elsevier, 1995.

Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, Vol. II. Athena Scientific, 3rd edition, 2007.

Dimitri P Bertsekas and Sergey Ioffe. Temporal differences-based policy iteration and applications in
neuro-dynamic programming. Lab. for Info. and Decision Systems Report LIDS-P-2349, MIT, Cambridge,
MA, 1996.

Jalaj Bhandari and Daniel Russo. Global optimality guarantees for policy gradient methods. CoRR,
abs/1906.01786, 2019.

Shalabh Bhatnagar, Richard S. Sutton, Mohammad Ghavamzadeh, and Mark Lee. Natural actor-critic
algorithms. Automatica, 45(11):2471–2482, 2009.

Emma Brunskill. Cs234 reinforcement learning winter 2019. http://web.stanford.edu/class/cs234/index.html.

Apostolos N Burnetas and Michael N Katehakis. Optimal adaptive policies for markov decision processes.
Mathematics of Operations Research, 22(1):222–255, 1997.

X.R. Cao. Stochastic Learning and Optimization: A Sensitivity-Based Approach. International Series on
Discrete Event Dynamic Systems, v. 17. Springer US, 2007. ISBN 9780387690827.

Yinlam Chow, Ofir Nachum, and Mohammad Ghavamzadeh. Path consistency learning in tsallis entropy
regularized mdps. In ICML, volume 80 of Proceedings of Machine Learning Research, pages 978–987. PMLR,
2018.

Imre Csiszar and János Körner. Information theory: coding theorems for discrete memoryless systems.
Cambridge University Press, 2011.

Thomas Degris, Martha White, and Richard S. Sutton. Off-policy actor-critic. CoRR, abs/1205.4839, 2012.

Christos Dimitrakakis and Michail G. Lagoudakis. Rollout sampling approximate policy iteration. Machine
Learning, 72(3):157–171, 2008.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep reinforcement
learning for continuous control. In International Conference on Machine Learning, pages 1329–1338, 2016.

Maryam Fazel, Rong Ge, Sham Kakade, and Mehran Mesbahi. Global convergence of policy gradient methods
for the linear quadratic regulator. In ICML, volume 80 of Proceedings of Machine Learning Research, pages
1466–1475. PMLR, 2018.

Alan Fern, Sung Wook Yoon, and Robert Givan. Approximate policy iteration with a policy language bias. In
NIPS, pages 847–854. MIT Press, 2003.

Roy Fox, Ari Pakman, and Naftali Tishby. Taming the noise in reinforcement learning via soft updates. In
Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence, UAI’16, pages
202–211, Arlington, Virginia, United States, 2016. AUAI Press. ISBN 978-0-9966431-1-5. URL
http://dl.acm.org/citation.cfm?id=3020948.3020970.

Thomas Furmston and David Barber. A unifying perspective of parametric policy search methods for markov
decision processes. In NIPS, pages 2726–2734, 2012.

Victor Gabillon, Alessandro Lazaric, Mohammad Ghavamzadeh, and Bruno Scherrer. Classification-based policy
iteration with a critic. In ICML, pages 1049–1056. Omnipress, 2011.

http://dl.acm.org/citation.cfm?id=3020948.3020970

Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized markov decision processes. In
ICML, volume 97 of Proceedings of Machine Learning Research, pages 2160–2169. PMLR, 2019.

Vineet Goyal and Julien Grand-Clement. A first-order approach to accelerated value iteration. arXiv preprint
arXiv:1905.09963, 2019.

Will Grathwohl, Dami Choi, Yuhuai Wu, Geoffrey Roeder, and David Duvenaud. Backpropagation through the
void: Optimizing control variates for black-box gradient estimation. In ICLR. OpenReview.net, 2018.

Shixiang Gu, Timothy P. Lillicrap, Zoubin Ghahramani, Richard E. Turner, and Sergey Levine. Q-prop:
Sample-efficient policy gradient with an off-policy critic. In ICLR. OpenReview.net, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In ICML, volume 80 of Proceedings of Machine
Learning Research, pages 1856–1865. PMLR, 2018.

Tommi S. Jaakkola, Michael I. Jordan, and Satinder P. Singh. On the convergence of stochastic iterative
dynamic programming algorithms. Neural Computation, 6(6):1185–1201, 1994.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In
Advances in neural information processing systems, pages 315–323, 2013.

Filip Jurcícek. Reinforcement learning for spoken dialogue systems using off-policy natural gradient method. In
SLT, pages 7–12. IEEE, 2012.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In ICML,
volume 2, pages 267–274, 2002.

Sham M Kakade. A natural policy gradient. In Advances in neural information processing systems, pages
1531–1538, 2002.

Daphne Koller and Ronald Parr. Policy iteration for factored mdps. In Proceedings of the Sixteenth conference
on Uncertainty in artificial intelligence, pages 326–334. Morgan Kaufmann Publishers Inc., 2000.

Michail G Lagoudakis and Ronald Parr. Least-squares policy iteration. Journal of machine learning research, 4
(Dec):1107–1149, 2003a.

Michail G Lagoudakis and Ronald Parr. Reinforcement learning as classification: Leveraging modern classifiers.
In Proceedings of the 20th International Conference on Machine Learning (ICML-03), pages 424–431, 2003b.

Alessandro Lazaric. Mva reinforcement learning.
http://chercheurs.lille.inria.fr/˜lazaric/Webpage/Teaching.html.

Alessandro Lazaric, Mohammad Ghavamzadeh, and Rémi Munos. Finite-sample analysis of least-squares policy
iteration. Journal of Machine Learning Research, 13:3041–3074, 2012.

Kyungjae Lee, Sungjoon Choi, and Songhwai Oh. Sparse markov decision processes with causal sparse tsallis
entropy regularization for reinforcement learning. IEEE Robotics and Automation Letters, 3(3):1466–1473,
2018.

Sergey Levine. Cs 294: Deep reinforcement learning. http://rail.eecs.berkeley.edu/deeprlcourse-fa17/index.html.

Hao Liu, Yihao Feng, Yi Mao, Dengyong Zhou, Jian Peng, and Qiang Liu. Action-dependent control variates for
policy optimization via stein identity. In ICLR. OpenReview.net, 2018.

James Martens. New insights and perspectives on the natural gradient method. arXiv preprint arXiv:1412.1193,
2014.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap between value and
policy based reinforcement learning. In NIPS, pages 2772–2782, 2017.

Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-regularized markov decision
processes. CoRR, abs/1705.07798, 2017.

Chris Nota and Philip S. Thomas. Is the policy gradient a gradient? CoRR, abs/1906.07073, 2019.

Yann Ollivier. True asymptotic natural gradient optimization. arXiv preprint arXiv:1712.08449, 2017.

Yann Ollivier, Ludovic Arnold, Anne Auger, and Nikolaus Hansen. Information-geometric optimization
algorithms: A unifying picture via invariance principles. The Journal of Machine Learning Research, 18(1):
564–628, 2017.

Matteo Papini, Matteo Pirotta, and Marcello Restelli. Adaptive batch size for safe policy gradients. In Advances
in Neural Information Processing Systems, pages 3591–3600, 2017.

Matteo Papini, Damiano Binaghi, Giuseppe Canonaco, Matteo Pirotta, and Marcello Restelli. Stochastic
variance-reduced policy gradient. In ICML, volume 80 of Proceedings of Machine Learning Research, pages
4023–4032. PMLR, 2018.

Matteo Papini, Matteo Pirotta, and Marcello Restelli. Smoothing policies and safe policy gradients. CoRR,
abs/1905.03231, 2019.

Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks. arXiv preprint
arXiv:1301.3584, 2013.

Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing, 71(7-9):1180–1190, 2008a.

Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy gradients. Neural networks, 21
(4):682–697, 2008b.

Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. In Twenty-Fourth AAAI
Conference on Artificial Intelligence, 2010.

Matteo Pirotta, Marcello Restelli, and Luca Bascetta. Adaptive step-size for policy gradient methods. In
Advances in Neural Information Processing Systems, pages 1394–1402, 2013.

Alexandre Proutiere. Reinforcement learning: A graduate course.
http://www.it.uu.se/research/systems_and_control/education/2017/relearn/.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley &
Sons, Inc., New York, NY, USA, 1994.

Bruno Scherrer, Mohammad Ghavamzadeh, Victor Gabillon, Boris Lesner, and Matthieu Geist. Approximate
modified policy iteration and its application to the game of tetris. Journal of Machine Learning Research, 16:
1629–1676, 2015.

John Schulman. Deep reinforcement learning: Policy gradients and q-learning. Technical report, Bay Area Deep
Learning School, 2016.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy
optimization. In International Conference on Machine Learning, pages 1889–1897, 2015.

John Schulman, Xi Chen, and Pieter Abbeel. Equivalence between policy gradients and soft q-learning. arXiv
preprint arXiv:1704.06440, 2017a.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017b.

Zebang Shen, Alejandro Ribeiro, Hamed Hassani, Hui Qian, and Chao Mi. Hessian aided policy gradient. In
ICML, volume 97 of Proceedings of Machine Learning Research, pages 5729–5738. PMLR, 2019.

Richard Sutton. Introduction to reinforcement learning with function approximation. Technical report, Tutorial
at the Conference on Neural Information Processing Systems, 2015.

Richard S Sutton and Andrew G Barto. Introduction to reinforcement learning. MIT press Cambridge, 2 edition,
2018.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient methods for
reinforcement learning with function approximation. In Advances in neural information processing systems,
pages 1057–1063, 2000.

Csaba Szepesvari. Algorithms for Reinforcement Learning. Morgan and Claypool Publishers, 2010.

Philip S. Thomas and Emma Brunskill. Policy gradient methods for reinforcement learning with function
approximation and action-dependent baselines. CoRR, abs/1706.06643, 2017.

George Tucker, Surya Bhupatiraju, Shixiang Gu, Richard E. Turner, Zoubin Ghahramani, and Sergey Levine.
The mirage of action-dependent baselines in reinforcement learning. In ICML, volume 80 of Proceedings of
Machine Learning Research, pages 5022–5031. PMLR, 2018.

Quan Vuong, Yiming Zhang, and Keith W. Ross. Supervised Policy Update for Deep Reinforcement Learning.
In International Conference on Learning Representations, 2019.

Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Rémi Munos, Koray Kavukcuoglu, and Nando
de Freitas. Sample efficient actor-critic with experience replay. In ICLR. OpenReview.net, 2017.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine learning, 8(3-4):229–256, 1992.

Cathy Wu, Aravind Rajeswaran, Yan Duan, Vikash Kumar, Alexandre M. Bayen, Sham Kakade, Igor Mordatch,
and Pieter Abbeel. Variance reduction for policy gradient with action-dependent factorized baselines. In
ICLR. OpenReview.net, 2018.

Yuhuai Wu, Elman Mansimov, Roger B Grosse, Shun Liao, and Jimmy Ba. Scalable trust-region method for
deep reinforcement learning using kronecker-factored approximation. In Advances in neural information
processing systems, pages 5279–5288, 2017.

Kaiqing Zhang, Alec Koppel, Hao Zhu, and Tamer Başar. Global convergence of policy gradient methods to
(almost) locally optimal policies. arXiv preprint arXiv:1906.08383, 2019.

	Value Iteration as Gradient Descent (optional)
	From Policy Iteration to Policy Search
	Policy Gradient
	Finite Horizon
	Infinite Horizon
	Gradient in Practice
	Convergence Results

	Actor-Critic
	Sample efficient gradient
	Variance-reduced gradient
	Policy Performance Bound

	Natural Gradient
	TRPO and PPO
	Non-parametric Update

	Deterministic Policy Gradient
	Regularization
	Entropy Regularization
	Theory of Regularization

	Resources
	References
	References

