Policy Search: Actor-Critic Methods

Matteo Pirotta
Facebook AI Research

Reinforcement Learning Summer School (RLSS)
I will add the parts presented on the whiteboard soon.
Value Iteration as Gradient Descent (optional)
Value Iteration

Optimal Bellman Operator

\[L v(s) = \max_a \{ r(s, a) + \gamma \sum_y p(y|s, a) v(y) \} \]

Value Iteration

\[v_{n+1} = L v_n \]

Guarantees [Puterman, 1994, Sec. 6.3.2]

greedy policy \(\pi^+(s) \in \arg \max_a \{ r(s, a) + \gamma \sum_y p(y|s, a) v_{n+1}(y) \} \)

\[\| v_{n+1} - v_n \|_\infty \leq \frac{\epsilon (1 - \gamma)}{2\gamma} \implies \| v^{\pi^+} - v^* \| \leq \epsilon \]

thus \(\pi^+ \) is an \(\epsilon \)-optimal policy

\(\epsilon \)-optimal policy in \(O \left(\frac{1}{1 - \gamma} \log \left(\frac{1}{\epsilon (1 - \gamma)} \right) \right) \) iterations
Value Iteration

Optimal Bellman Operator

\[Lu(s) = \max_{a} \{ r(s, a) + \gamma \sum_{y} p(y|s, a)v(y) \} \]

Value Iteration

\[v_{n+1} = Lu \]

Guarantees [Puterman, 1994, Sec. 6.3.2]

Greedy policy \(\pi^+(s) \in \arg \max_{a} \{ r(s, a) + \gamma \sum_{y} p(y|s, a)v_{n+1}(y) \} \)

\[\|v_{n+1} - v_{n}\|_{\infty} \leq \frac{\epsilon(1 - \gamma)}{2\gamma} \implies \|v^{\pi^+} - v^{*}\| \leq \epsilon \]

stopping condition

thus \(\pi^+ \) is an \(\epsilon \)-optimal policy

\(\epsilon \)-optimal policy in \(O \left(\frac{1}{1 - \gamma} \log \left(\frac{1}{\epsilon(1 - \gamma)} \right) \right) \) iterations
Relaxation Value Iteration (R-VI)

R-VI is a Krasnoselskii-Mann (KM) iteration

\[v_{n+1} = v_n - \alpha_n (v_n - Lv_n) \]

- this is a smooth version of VI
 - \(\alpha_n = 1 \) is VI
- \(v_n - Lv_n \) is the gradient of an unknown function \(f : \mathbb{R}^n \to \mathbb{R}^n \)

why? \(\|v^* - Lv^*\|_\infty = 0 \) (vanishing gradient at the optimum)
Relaxation Value Iteration (R-VI)

R-VI is a Krasnoselskii-Mann (KM) iteration

\[v_{n+1} = v_n - \alpha_n (v_n - L v_n) \]

- this is a smooth version of VI
 - \(\alpha_n = 1 \) is VI
- \(v_n - L v_n \) is the gradient of an unknown function \(f : \mathbb{R}^n \rightarrow \mathbb{R}^n \)
 - why? \(\| v^* - L v^* \|_\infty = 0 \) (vanishing gradient at the optimum)

Guarantees \(\forall \alpha_n = \alpha \in (0, 2/(1 - \gamma)) \)

\[\| v_n - v^* \|_\infty \leq (\gamma \alpha + |1 - \alpha|)^n \cdot \| v_0 - v^* \|_\infty \]

Optimal rate: \(\alpha = 1 \implies \text{VI} \)

Not faster than VI but interesting connections with gradient descent
Gradient Descent

\[v_{n+1} = v_n - \alpha_n \nabla f(v_n) \]

- Linear convergence rate when \(f \) is \(\mu \)-strongly convex and \(L \)-Lipschitz continuous \((L > \mu > 0)\)
- Optimal rate is obtained for \(\alpha_n = \alpha = \frac{2}{L + \mu} \)

\[\exists C > 0, \quad \|v_n - v^*\|_2 \leq C \left(\frac{L - \mu}{L + \mu} \right)^n \]

Can we map \((L, \mu)\) to parameters of VI?
R-VI as Gradient Descent
[Goyal and Grand-Clement, 2019]

\[(GD) \quad \mu \|v - w\|_2 \leq \|\nabla f(v) - \nabla f(w)\|_2 \leq L\|v - w\|_2\]

\[\mu \mapsto 1 - \gamma \quad L \mapsto 1 + \gamma\]

Recall that optimal rate of R-VI is obtained for

\[\alpha = 1 = \frac{2}{(1 + \gamma) + (1 - \gamma)} = \frac{2}{L + \gamma}\]

as in gradient descent

and the optimal rate is \(\gamma\):

\[\gamma = \frac{(1 + \gamma) - (1 - \gamma)}{(1 + \gamma) + (1 - \gamma)} = \frac{L - \mu}{L + \mu}\]

Strong connection between VI and gradient (simply different norms)
R-VI as Gradient Descent

[Goyal and Grand-Clement, 2019]

\[(GD) \quad \mu \|v - w\|_2 \leq \|\nabla f(v) - \nabla f(w)\|_2 \leq L\|v - w\|_2\]

\[(VI) \quad (1 - \gamma)\|v - w\|_\infty \leq \|(v - Lv) - (w - Lw)\|_\infty \leq (1 + \gamma)\|v - w\|_\infty\]

\[\mu \mapsto 1 - \gamma \quad L \mapsto 1 + \gamma\]

Recall that optimal rate of R-VI is obtained for

\[\alpha = 1 = \frac{2}{(1 + \gamma) + (1 - \gamma)} = \frac{2}{L + \gamma}\]

as in gradient descent

and the optimal rate is \(\gamma\):

\[\gamma = \frac{(1 + \gamma) - (1 - \gamma)}{(1 + \gamma) + (1 - \gamma)} = \frac{L - \mu}{L + \mu}\]

Strong connection between VI and gradient (simply different norms)
Accelerated Value Iteration (A-VI)
[Goyal and Grand-Clement, 2019]

Nesterov Acceleration for VI
\[\forall v_0, v_1 \in \mathbb{R}^S, n \geq 1\]

\[h_n = v_n + \beta_n(v_n - v_{n-1})\]
\[v_{n+1} = h_n - \alpha_n(h_n - Lh_n)\]

When \(\beta_n = \gamma\) and \(\alpha_n = 1/(1 + \gamma)\)

\[\epsilon\text{-optimal policy in } O\left(\frac{\sqrt{1+\gamma}}{\sqrt{1-\gamma}} \log\left(\frac{1}{\epsilon(1-\gamma)}\right)\right)\text{ iterations}\]
From Policy Iteration to Policy Search
Policy Iteration: recap

Let π_0 be an arbitrary stationary policy

while $k = 1, \ldots, K$ do

- **Policy Evaluation:** given π_k compute $v_k = v^{\pi_k}$

- **Policy Improvement:** find π_{k+1} that is better than π_k
 - e.g., compute the greedy policy

\[
\pi_{k+1}(s) \in \arg \max_{a \in A} \left\{ r(s, a) + \gamma \sum_y p(y|s, a) v^{\pi_k}(y) \right\}
\]

return the last policy π_K

depth
Let π_0 be an arbitrary stationary policy

while $k = 1, \ldots, K$ do

\begin{itemize}
 \item **Policy Evaluation**: given π_k compute $v_k = v^{\pi_k}$
 \item **Policy Improvement**: find π_{k+1} that is better than π_k
 - e.g., compute the greedy policy
 \[\pi_{k+1}(s) \in \arg \max_{a \in A} \left\{ r(s, a) + \gamma \sum_y p(y|s, a)v^{\pi_k}(y) \right\} \]
\end{itemize}

return the last policy π_K

end

- Convergence is finite and monotonic [Bertsekas, 2007] (in exact settings)

? **Issues**: Function approximation for v^{π_k} \implies Is it still converging? Continuous actions?
Approximate Policy Iteration

Issue: is no longer guaranteed to converge!

Proposition

The asymptotic performance of the policies π_k generated by the API algorithm is related to the approximation error as:

$$\limsup_{k \to +\infty} \|v^* - v^{\pi_k}\|_\infty \leq \frac{2\gamma}{(1 - \gamma)^2} \limsup_{k \to +\infty} \|v_k - v^{\pi_k}\|_\infty$$

performance loss

approximation error
Approximate Policy Iteration

Issue: is no longer guaranteed to converge!

Proposition

The asymptotic performance of the policies π_k generated by the API algorithm is related to the approximation error as:

$$\limsup_{k \to +\infty} \| v^* - v^{\pi_k} \|_\infty \leq \frac{2\gamma}{(1 - \gamma)^2} \limsup_{k \to +\infty} \| v_k - v^{\pi_k} \|_\infty$$

Diagram:

- **Transitional phase**
- **Stationary phase**
- **Asymptotic error**
Approximate Policy Iteration: Issues

Potential pathologies in policy-iteration with function approximation

1. Exploration
2. Policy evaluation: bias, simulation bias/error
3. Policy improvement: policy oscillation
 - *local attractors*, e.g., local maxima
Approximate Policy Iteration: Issues

Potential pathologies in policy-iteration with function approximation

1. Exploration
2. Policy evaluation: bias, simulation bias/error
3. Policy improvement: policy oscillation
 • *local attractors*, e.g., local maxima
Approximate Policy Iteration: Issues

Potential pathologies in policy-iteration with function approximation

1. Exploration
2. Policy evaluation: bias, simulation bias/error
3. Policy improvement: policy oscillation
 - *local attractors*, e.g., local maxima
Policy oscillation with linear function approximation [Koller and Parr, 2000, Lagoudakis and Parr, 2003a]

Tetris [Bertsekas and Ioffe, 1996] very pathological [e.g., Scherrer et al., 2015]

Figure 9: The problematic MDP.
Approximate a stochastic policy directly using function approximation

$$\pi_\theta : S \to \mathcal{P}(A) \text{ with } \theta \in \mathbb{R}^d$$

Let $J(\pi_\theta)$ denote the policy performance of policy π_θ

Policy optimization problem

$$\max_{\pi_\theta} J(\pi_\theta)$$
Approximate a *stochastic policy* directly using function approximation

\[\pi_\theta : S \rightarrow \mathcal{P}(A) \text{ with } \theta \in \mathbb{R}^d \]

Let \(J(\pi_\theta) \) denote the *policy performance* of policy \(\pi_\theta \)

Policy optimization problem

\[
\max_{\pi_\theta} J(\pi_\theta)
\]

Solution 1: Policy Search/Black-box optimization:
Use global optimizers or gradient by finite-difference methods

Policy \(\pi_\theta \) can also be *not differentiable* w.r.t. \(\theta \)
Approximate a *stochastic policy* directly using function approximation

\[\pi_\theta : S \rightarrow \mathcal{P}(A) \text{ with } \theta \in \mathbb{R}^d \]

Let \(J(\pi_\theta) \) denote the *policy performance* of policy \(\pi_\theta \)

Policy optimization problem

\[\max_{\pi_\theta} J(\pi_\theta) \]

Solution 1: Policy Search/Black-box optimization:

Use global optimizers or gradient by finite-difference methods

Policy \(\pi_\theta \) can also be *not differentiable* w.r.t. \(\theta \)

Solution 2: Policy gradient optimization:

Compute the gradient \(\nabla_\theta J(\theta) \) and follow the ascent direction

\(\nabla_\theta \pi_\theta(s, a) \) should exist
Policy Gradient as Policy Update

Approximate Policy Iteration

\[\pi_{\theta_{k+1}} = \arg \max_{\pi_\theta} q^{\pi_\theta}(s, \pi_\theta(s)) \]

Unstable (fast)

Policy Gradient

\[\theta_{k+1} = \theta_k + \alpha_k \nabla J(\theta_k) \]

Smooth, fine control (slow)

How do we compute \(\nabla_{\theta} J(\theta) \)?

(recap on optimality criteria)
Finite Horizon
Given an MDP \(M = (S, A, p, r, H, \rho) \) and a policy \(\pi \)

\[
J(\pi) = \mathbb{E} \left[\sum_{t=1}^{H} r_t | \pi, M \right] = \mathbb{E}_{\tau \sim P(\tau | \pi, M)} \left[R(\tau) \right]
\]

where \(\tau = (s_1, a_1, r_1, \ldots, s_{H+1}) \) is a trajectory and \(R(\tau) \) its return (sum of returns).
Policy Gradient: finite-horizon

Theorem ([Williams, 1992, Sutton et al., 2000])

For any finite-horizon MDP $M = (S, A, p, r, H, \rho)$ and differentiable policy π_θ

$$\nabla_\theta J(\pi_\theta) = \mathbb{E}_{\tau \sim P(\cdot | \pi, M)} \left[R(\tau) \sum_{t=1}^{H} \nabla_\theta \log \pi_\theta(s_t, a_t) \right]$$
Proof

- The objective is an *expectation*. Want to compute the gradient w.r.t. \(\theta \)

\[
\nabla_\theta J(\theta) = \nabla_\theta \mathbb{E}_\tau[R(\tau)] = \nabla_\theta \int \mathbb{P}(\tau|\theta)R(\tau)d\tau
\
= \int \nabla_\theta \mathbb{P}(\tau|\theta)R(\tau)d\tau
\
= \int \mathbb{P}(\tau|\theta) \nabla_\theta \log \mathbb{P}(\tau|\theta) R(\tau)d\tau
\
= \mathbb{E}_\tau[R(\tau)\nabla_\theta \log \mathbb{P}(\tau|\theta)]
\]

* log trick

\[
\nabla_\theta \log \mathbb{P}(\tau|\theta) = \frac{\nabla_\theta \mathbb{P}(\tau|\theta)}{\mathbb{P}(\tau|\theta)}
\]
The objective is an expectation. Want to compute the gradient w.r.t. θ

$$
\nabla_\theta J(\theta) = \nabla_\theta \mathbb{E}_\tau [R(\tau)] = \nabla_\theta \int \mathbb{P}(\tau|\theta) R(\tau) d\tau

= \int \nabla_\theta \mathbb{P}(\tau|\theta) R(\tau) d\tau

= \int \mathbb{P}(\tau|\theta) \nabla_\theta \log \mathbb{P}(\tau|\theta) \cdot R(\tau) d\tau

= \mathbb{E}_\tau [R(\tau) \nabla_\theta \log \mathbb{P}(\tau|\theta)]

$$

Last expression is an unbiased gradient estimator. Just sample $\tau_i \sim \mathbb{P}(\tau|\theta)$, and compute $\hat{g}_i = R(\tau_i) \nabla_\theta \log \mathbb{P}(\tau|\theta)$
Proof

- The objective is an *expectation*. Want to compute the gradient w.r.t. θ

$$\nabla_\theta J(\theta) = \nabla_\theta \mathbb{E}_\tau[R(\tau)] = \nabla_\theta \int P(\tau|\theta)R(\tau)d\tau$$

$$= \int \nabla_\theta P(\tau|\theta)R(\tau)d\tau$$

$$= \int P(\tau|\theta) \nabla_\theta \log P(\tau|\theta) R(\tau)d\tau$$

$$= \mathbb{E}_\tau[R(\tau)\nabla_\theta \log P(\tau|\theta)]$$

- Last expression is an *unbiased* gradient estimator.
 Just sample $\tau_i \sim P(\tau|\theta)$, and compute $\hat{g}_i = R(\tau_i)\nabla_\theta \log P(\tau|\theta)$

- Need to be able to *compute and differentiate the density* $P(\tau|\theta)$ w.r.t. θ
Proof

Likelihood (with stochastic policies)

\[P(\tau|\pi, M) = \rho(s_1) \prod_{i=1}^{H} \pi(s_i, a_i)p(s_{i+1}|s_i, a_i) \]

\[\log P(\tau|\pi, M) = \log \rho(s_1) + \sum_{i=1}^{H} \log \pi(s_i, a_i) + \log p(s_{i+1}|s_i, a_i) \]

\[\nabla_{\theta} \log P(\tau|\pi, M) = \nabla_{\theta} \log \rho(s_1) + \sum_{i=1}^{H} \left(\nabla_{\theta} \log \pi(s_i, a_i) + \nabla_{\theta} \log p(s_{i+1}|s_i, a_i) \right) \]
1. Let π_{θ_1} be an arbitrary policy

2. At each iteration $k = 1, \ldots, K$
 - Sample m trajectory $\tau_i = (s_1, a_1, r_1, s_2, \ldots, s_T, a_T, r_T, s_{T+1})$ following π_k
 - Compute unbiased gradient estimate
 \[
 \hat{\nabla}_\theta J(\pi_{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \left(\sum_{t=1}^{H} r_t^i \right) \left(\sum_{t=1}^{H} \nabla_\theta \log \pi_{\theta_k}(s_t, a_t) \right)
 \]
 - Update parameters
 \[
 \theta_{k+1} = \theta_k + \alpha_k \hat{\nabla}_\theta J(\pi_{\theta_k})
 \]

3. Return last policy π_{θ_K}
$\hat{g}_i = R(\tau_i) \nabla_\theta \log P(\tau_i | \pi_\theta, M)$

- $R(\tau_i)$ measures how good is sample τ_i
- Moving in the direction of \hat{g}_i pushes up the log probability of the sample, in proportion to how good it is

Interpretation:
- Uses good trajectories as supervised examples
- Like maximum likelihood in supervised learning
- Good stuff are made more likely while bad less

[Schulman, 2016]
REINFORCE: Intuition

\[\hat{g}_i = R(\tau_i) \nabla_\theta \log P(\tau_i | \pi_\theta, M) \]

- \(R(\tau_i) \) measures how good is sample \(\tau_i \)
- Moving in the direction of \(\hat{g}_i \) pushes up the log probability of the sample, in proportion to how good it is

[Schulman, 2016]
REINFORCE: Intuition

\[\hat{g}_i = R(\tau_i) \nabla_\theta \log P(\tau_i | \pi_\theta, M) \]

- \(R(\tau_i) \) measures how good is sample \(\tau_i \)
- Moving in the direction of \(\hat{g}_i \) pushes up the log probability of the sample, in proportion to how good it is

Interpretation: uses good trajectories as supervised examples
 - *Like maximum likelihood* in supervised learning
 - good stuff are made more likely while bad less (TO REMOVE)
 - Trial and Error approach

[Schulman, 2016]
REINFORCE

Pros

- Easy to compute
- *Does not use Markov property!*
- Can be used in partially observable MDPs without modification
Pros
- Easy to compute
- *Does not use* Markov property!
- Can be used in partially observable MDPs without modification

Issues
- Use an MC estimate of $q(s, a)$
- It has possibly a *very large variance*
- Needs many samples to converge
Policy Gradient: temporal structure

$$\nabla_\theta J(\pi_\theta) = \mathbb{E} \left[\sum_{t=1}^{H} \nabla_\theta \log \pi_\theta(s_t, a_t) \sum_{t' = t}^{H} r_t \right]$$
Policy Gradient: temporal structure

\[\nabla_\theta J(\pi_\theta) = \mathbb{E} \left[\sum_{t=1}^{H} \nabla_\theta \log \pi_\theta(s_t, a_t) \sum_{t'=t}^{H} r_{t'} \right] \]

\[\mathbb{E}_{a \sim \pi_\theta} \left[\nabla_\theta \log \pi_\theta(s_t, a) \sum_{t'=1}^{t-1} r_{i} \bigg| \tau_{1:t-1} \right] = \left(\sum_{t'=1}^{t-1} r_{i} \right) \int \pi_\theta(s_t, a) \nabla_\theta \log \pi(s_t, a) da \]

= \left(\sum_{t'=1}^{t-1} r_{i} \right) \int \nabla_\theta \pi(s_t, a) da

= \left(\sum_{t'=1}^{t-1} r_{i} \right) \nabla_\theta \int \pi(s_t, a) da = 0 \]

in literature known as G(PO)MDP [Peters and Schaal, 2008b]
Further reduce the variance by introducing a baseline $b(s)$

$$\nabla_{\theta} J(\pi_\theta) = \mathbb{E} \left[\sum_{t=1}^H \nabla_{\theta} \log \pi_\theta(s_t, a_t) \left(\sum_{t'=t}^H r_{t'} - b(s_t) \right) \right]$$

The gradient estimate is unbiased

"Near optimal choice" that minimize the variance is the expected sum of returns

$$b^*(s_t) = \mathbb{E} \left[\sum_{t=1}^T r_t | s_1 = s_t, \pi, M \right]$$

Interpretation: increase the log probability of an action a_t proportionally to how much returns are better than expected (relative values)

Intuition: $b(s_t)$ does not depend on the action thus

$$\mathbb{E}_{a \sim \pi_\theta} [\nabla_{\theta} \log \pi_\theta(s_t, a) b(s_t) | \tau_{1:t-1}] = 0$$
Baseline derivation

Rough idea

\[
\nabla_{\theta_i} J(\pi_\theta) = \mathbb{E}_\tau [\nabla_{\theta_i} \log P(\tau | \pi_\theta)(R(\tau) - b)] \\
:= g(\tau)
\]

\[
\text{Var} = \mathbb{E}_\tau [(g(\tau)(R(\tau) - b))^2] - (\mathbb{E}_\tau [g(\tau)(R(\tau) - b)])^2
\]

\[
\implies \mathbb{E}_\tau [g(\tau)R(\tau)]^2
\]

baseline is unbiased in expectation

\[
\frac{\partial}{\partial b} \text{Var} = \frac{\partial}{\partial b} \mathbb{E}_\tau [g(\tau)^2(R(\tau) - b)^2]
\]

\[
= \frac{\partial}{\partial b} \mathbb{E}_\tau [g(\tau)^2R(\tau)^2] - 2 \frac{\partial}{\partial b} \mathbb{E}_\tau [g(\tau)^2 R(\tau) \ b] + \frac{\partial}{\partial b} \mathbb{E}_\tau [b^2 g(\tau)^2]
\]

\[
\implies b^*(\tau) = \frac{\mathbb{E}_\tau [g(\tau)^2 R(\tau)]}{\mathbb{E}_\tau [g(\tau)^2]}
\]

Expected return weighted by the magnitude of the gradient
Infinite Horizon
Going beyond the finite-horizon case

Theorem

For an infinite horizon MDP (average or discounted), the policy gradient is

\[\nabla_\theta J(\pi_\theta) = \mathbb{E}_{s \sim d^\pi} \mathbb{E}_{a \sim \pi_\theta(s, \cdot)} [\nabla_\theta \log \pi_\theta(s, a) q^\pi(s, a)] \]

- \(d^\pi \) is the stationary distribution
- \(q^\pi \) is the state-action value function
Infinite-horizon discounted

- Define a distribution ρ over S
- The γ-discounted visitation frequency for policy π is

$$d^\pi(s) = \lim_{T \to +\infty} \sum_{t=1}^{T} \gamma^{t-1} \mathbb{P}(s_t = s | \pi, M, \rho)$$

- Then

$$q^\pi(s,a) = \lim_{T \to +\infty} \mathbb{E} \left[\sum_{t=1}^{T} \gamma^{t-1} r(s_t, a_t) | s_1 = s, a_1 = a, \pi, M \right]$$

$$v^\pi(s) = \lim_{T \to +\infty} \mathbb{E} \left[\sum_{t=1}^{T} \gamma^{t-1} r(s_t, a_t) | s_1 = s, \pi, M \right] = \sum_a \pi(s,a) q^\pi(s,a)$$

$$J(\pi) = \lim_{T \to +\infty} \mathbb{E} \left[\sum_{t=1}^{T} \gamma^{t-1} r(s_t, a_t) | \pi, M, \rho \right]$$

$$= \sum_s d^\pi(s) \sum_a \pi(s,a) r(s,a) = \sum_s \rho(s) v^\pi(s)$$
Bellman Equation

\[q^\pi(s, a) = r(s, a) + \sum_y p(y|s, a) v^\pi(y) \]

\[
\nabla_\theta v^\pi(s) = \sum_a q^\pi(s, a) \nabla_\theta \pi(s, a) + \pi(s, a) \nabla_\theta q^\pi(s, a) \\
= \sum_a q^\pi(s, a) \nabla_\theta \pi(s, a) + \gamma \sum_a \pi(s, a) \sum_y p(y|s, a) \nabla_\theta v^\pi(y)
\]

Bellman equation for the gradient!
Policy Gradient: proof

Multiply by $d^\pi(s)$ and sum over states

$$\mathbb{B} = \sum_s d^\pi(s) \gamma \sum_{a,y} \pi(s, a) p(y|s, a) \nabla_\theta v^\pi(y)$$

$$= \sum_s \sum_{k=0}^{+\infty} \gamma^k \mathbb{P}(s_1 \to s, k, \pi) \gamma \sum_{a,y} \pi(s, a) p(y|s, a) \nabla_\theta v^\pi(y)$$
Multiply by $d^\pi(s)$ and sum over states

$$\mathcal{B} = \sum_s d^\pi(s) \gamma \sum_{a,y} \pi(s, a)p(y|s, a) \nabla_\theta v^\pi(y)$$

$$= \sum_s \sum_{k=0}^{+\infty} \gamma^k \mathbb{P}(s_1 \to s, k, \pi) \gamma \sum_{a,y} \pi(s, a)p(y|s, a) \nabla_\theta v^\pi(y)$$
Policy Gradient: proof

Multiply by $d^{\pi}(s)$ and sum over states

$$\mathbb{B} = \sum_s d^{\pi}(s) \gamma \sum_{a,y} \pi(s, a)p(y|s, a) \nabla_{\theta} v^{\pi}(y)$$

$$= \sum_s \sum_{k=0}^{+\infty} \gamma^k P(s_1 \rightarrow s, k, \pi) \gamma \sum_{a,y} \pi(s, a)p(y|s, a) \nabla_{\theta} v^{\pi}(y)$$

$$= \sum_y \left(\sum_{k=0}^{+\infty} \gamma^{k+1} P(s_1 \rightarrow y, k + 1, \pi) \right) \nabla_{\theta} v^{\pi}(y)$$
Policy Gradient: proof

Multiply by \(d^\pi(s) \) and sum over states

\[
\mathbb{E} = \sum_s d^\pi(s) \gamma \sum_{a,y} \pi(s, a) p(y|s, a) \nabla_\theta v^\pi(y)
\]

\[
= \sum_s \sum_{k=0}^{+\infty} \gamma^k \mathbb{P}(s_1 \rightarrow s, k, \pi) \gamma \sum_{a,y} \pi(s, a) p(y|s, a) \nabla_\theta v^\pi(y)
\]

\[
= \sum_y \left(\sum_{k=0}^{+\infty} \gamma^{k+1} \mathbb{P}(s_1 \rightarrow y, k + 1, \pi) \pm \mathbb{P}(s_1 \rightarrow y, 0, \pi) \right) \nabla_\theta v^\pi(y)
\]
Multiply by \(d^\pi(s) \) and sum over states

\[
\mathbb{B} = \sum_s d^\pi(s) \gamma \sum_{a,y} \pi(s, a) p(y | s, a) \nabla_\theta v^\pi(y)
\]

\[
= \sum_s \sum_{k=0}^{+\infty} \gamma^k \mathbb{P}(s_1 \rightarrow s, k, \pi) \gamma \sum_{a,y} \pi(s, a) p(y | s, a) \nabla_\theta v^\pi(y)
\]

\[
= \sum_y \left(\sum_{k=0}^{+\infty} \gamma^{k+1} \mathbb{P}(s_1 \rightarrow y, k+1, \pi) \pm \mathbb{P}(s_1 \rightarrow y, 0, \pi) \right) \nabla_\theta v^\pi(y)
\]

\[
= \sum_y \left(d^\pi(y) - \mathbb{P}(s_1 \rightarrow y, 0, \pi) \right) \nabla_\theta v^\pi(y)
\]

\[
\triangledown \theta J(\pi)
\]
Policy Gradient: proof

Multiply by $d^\pi(s)$ and sum over states

$$\mathbb{B} = \sum_s d^\pi(s) \gamma \sum_{a,y} \pi(s, a)p(y|s, a)\nabla_\theta v^\pi(y)$$

$$= \sum_s \sum_{k=0}^{+\infty} \gamma^k \mathbb{P}(s_1 \rightarrow s, k, \pi) \gamma \sum_{a,y} \pi(s, a)p(y|s, a)\nabla_\theta v^\pi(y)$$

$$= \sum_y \left(\sum_{k=0}^{+\infty} \gamma^{k+1} \mathbb{P}(s_1 \rightarrow y, k+1, \pi) \pm \mathbb{P}(s_1 \rightarrow y, 0, \pi) \right) \nabla_\theta v^\pi(y)$$

$$= \sum_y \left(d^\pi(y) - \mathbb{P}(s_1 \rightarrow y, 0, \pi) \right) \nabla_\theta v^\pi(y)$$

$$:= \rho(y)$$

Summing up everything

$$\sum_s d^\pi(s) \nabla_\theta v^\pi(s) = \sum_s d^\pi(s) \nabla_\theta \pi(s, a) q^\pi(s, a) + \sum_y d^\pi(y) \nabla_\theta v^\pi(y) - \nabla_\theta \sum_y \rho(y) v^\pi(y)$$

$$= \nabla_\theta J(\pi)$$
Collect m trajectories for policy π starting from $s_1 \sim \rho$

For each time t

$$\hat{q}_t = \sum_{t'=t}^{T} \gamma^{t'-t} r_{t'}$$

(almost) unbiased estimate $\rightarrow \mathbb{E}[\hat{q}|s_t, a_t] = q^\pi(s_t, a_t)$

Then

$$\nabla_\theta J(\pi_\theta) := \frac{1}{m} \sum_{i=1}^{m} \sum_{t=1}^{T} \gamma^{t-1} \nabla_\theta \log \pi_\theta (s_{i,t}, a_{i,t}) \sum_{t'=t}^{T} \gamma^{t'-t} r_{i,t'}$$
REINFORCE for infinite horizon

- Define $F_t := \hat{q}_t \nabla_\theta \log \pi_\theta(s_t, a_t)$

$$
\mathbb{E} \left[\sum_{t=1}^{+\infty} \gamma^{t-1} F_t \right] = \sum_{t=1}^{+\infty} \gamma^{t-1} \sum_s \mathbb{E}[F_t | s_t = s] \mathbb{P}(s_t = s | s_1 \sim \rho)
$$

$$
= \sum_{s,a} q^\pi(s, a) \nabla_\theta \pi(s, a) \sum_{t=1}^{+\infty} \gamma^{t-1} \mathbb{P}(s_t = s | s_1 \sim \rho)
$$

$$
= \nabla_\theta J(\pi)
$$

- Almost unbiased (T vs. $+\infty$)
- We can introduce a baseline $b(s_t)$ also in this case
Policy Gradient: example

\[
\nabla_\theta J(\pi_\theta) := \frac{1}{m} \sum_{i=1}^{m} \sum_{t=1}^{T} \gamma^{t-1} \nabla_\theta \log \pi_\theta(s_{i,t}, a_{i,t}) \cdot \hat{q}_{i,t}
\]

How do we represent a policy?
Policy Gradient: example

\[\nabla_{\theta} J(\pi_\theta) := \frac{1}{m} \sum_{i=1}^{m} \sum_{t=1}^{T} \gamma^{t-1} \nabla_{\theta} \log \pi_\theta(s_{i,t}, a_{i,t}) \cdot \hat{q}_{i,t} \]

How do we represent a policy?

Normal Policy

\[\pi(a|s) = \frac{1}{\sigma_\omega(s) \sqrt{2\pi}} e^{- \frac{(a - \mu_\theta(s))^2}{2\sigma^2_\omega(s)}} \]

then

\[\nabla_{\theta} \log \pi(a|s) = \frac{(a - \mu_\theta(s))}{\sigma^2_\omega(s)} \nabla_{\theta} \mu_\theta(s) \]

\[\nabla_{\omega} \log \pi(a|s) = \frac{(a - \mu_\theta(s))^2 - \sigma^2_\omega(s)}{\sigma^3_\omega(s)} \nabla_{\omega} \sigma_\omega(s) \]
Policy Gradient: example

\[\nabla_\theta \bar{J}(\pi_\theta) := \frac{1}{m} \sum_{i=1}^{m} \sum_{t=1}^{T} \gamma^{t-1} \nabla_\theta \log \pi_\theta(s_{i,t}, a_{i,t}) \cdot \hat{q}_{i,t} \]

How do we represent a policy?

Normal Policy

\[\pi(a|s) = \frac{1}{\sigma_\omega(s) \sqrt{2\pi}} e^{-\frac{(a-\mu_\theta(s))^2}{2\sigma_\omega^2(s)}} \]

then

\[\nabla_\theta \log \pi(a|s) = \frac{(a - \mu_\theta(s))}{\sigma_\omega^2(s)} \nabla_\theta \mu_\theta(s) \]

\[\nabla_\omega \log \pi(a|s) = \frac{(a - \mu_\theta(s))^2 - \sigma_\omega^2(s)}{\sigma_\omega^3(s)} \nabla_\omega \sigma_\omega(s) \]

Gibbs (softmax) policy

\[\pi(a|s) = \frac{e^{\kappa Q_\theta(s,a)}}{\sum_{a' \in A} e^{\kappa Q_\theta(s,a')}} \]

then

\[\nabla_\theta \log \pi(a|s) = \kappa \nabla_\theta Q_\theta(s, a) \]

\[- \kappa \sum_{a' \in A} \pi(a'|s) \nabla_\theta Q_\theta(s, a') \]
Policy Gradient via Automatic Differentiation

\[\nabla_{\theta} J(\pi_{\theta}) := \frac{1}{m} \sum_{i=1}^{m} \sum_{t=1}^{T} \gamma^{t-1} \nabla_{\theta} \log \pi_{\theta}(s_{i,t}, a_{i,t}) \cdot \hat{q}_{i,t} \]

- Manually code the derivative can be tedious
 \[\implies \text{use auto diff} \]
- Define a graph such that its gradient is the policy gradient
 “Pseudo loss”: weighted maximum likelihood

\[\tilde{J} = \frac{1}{m} \sum_{i=1}^{m} \sum_{t=1}^{T} \log \pi_{\theta}(s_{i,t}, a_{i,t}) \hat{q}_{i,t} \]
Gradient in Practice

Finite-Horizon γ-discounted setting

$$J_\gamma(\pi) = \mathbb{E} \left[\sum_{t=1}^{H} \gamma^{t-1} r_t \right]$$

$$\nabla_\theta J_\gamma(\pi) = \mathbb{E} \left[\sum_{t=1}^{H} \gamma^{t-1} \nabla_\theta \log \pi_\theta(s_t, a_t) q^\pi(s_t, a_t) \right]$$
Gradient in Practice

Finite-Horizon γ-discounted setting

$$J_\gamma(\pi) = \mathbb{E} \left[\sum_{t=1}^{H} \gamma^{t-1} r_t \right]$$

$$\nabla_\theta J_\gamma(\pi) = \mathbb{E} \left[\sum_{t=1}^{H} \gamma^{t-1} \nabla_\theta \log \pi_\theta(s_t, a_t) q_\pi(s_t, a_t) \right]$$

In practice

$$\nabla_\theta J^?_\gamma(\pi) = \mathbb{E} \left[\sum_{t=1}^{H} \gamma^{t-1} \nabla_\theta \log \pi_\theta(s_t, a_t) q_\pi(s_t, a_t) \right]$$

$\nabla_\theta J^?_\gamma(\pi)$ is a semi-gradient of the undiscounted objective $J(\pi)$
Gradient in practice

\[J(\pi) = \mathbb{E} \left[\sum_{t=1}^{H} r_t \right] \leftrightarrow \nabla_{\theta} J(\pi) = \sum_s d_{\gamma}(s) \frac{\partial}{\partial \theta} v_{\gamma}(s) + \sum_s v_{\gamma}(s) \frac{\partial}{\partial \theta} d_{\gamma}(s) \]

\[:= \nabla_{\theta} J^2(\pi) \]

\[\text{TD(0) step is also a semi-gradient of the mean squared Bellman error [Sutton and Barto, 2018, Chapter 9]} \]

- In \textit{tabular settings}, semi-gradient TD(0) converges to a minimum of the mean squared error [Jaakkola et al., 1994]
- Also \textit{on-policy} TD with linear function approximatio [Sutton and Barto, 2018]
Gradient in practice

\[J(\pi) = \mathbb{E} \left[\sum_{t=1}^{H} r_t \right] \quad \Rightarrow \quad \nabla_\theta J(\pi) = \sum_s d_\gamma^\pi(s) \frac{\partial}{\partial \theta} v_\gamma^\pi(s) + \sum_s v_\gamma^\pi(s) \frac{\partial}{\partial \theta} d_\gamma^\pi(s) \]

\[:= \nabla_\theta J^2(\pi) \]

\[\text{TD}(0) \text{ step is also a semi-gradient of the mean squared Bellman error} \ [\text{Sutton and Barto, 2018, Chapter 9}] \]

- In *tabular settings*, semi-gradient TD(0) converges to a minimum of the mean squared error [Jaakkola et al., 1994]
- Also *on-policy* TD with linear function approximatio [Sutton and Barto, 2018]

👍 Semi-policy gradient may converge to a BAD policy w.r.t. both discounted and undiscounted objectives

Impossibility result [Nota and Thomas, 2019]:

\[\# f(\pi) \in C \text{ such that } \nabla_\theta J^2(\pi) = \frac{\partial}{\partial \theta} f(\pi) \]

(Example?)
Convergence Results
Convergence Results

- Policy gradient is *stochastic gradient*

\[\theta_{k+1} = \theta_k + \alpha_k (\nabla J(\theta_k) + \text{noise}) \]

- \(J \) is non-convex

\[\Rightarrow \] converge asymptotically to a stationary point or a local minimum (*under standard technical assumptions*)
Convergence Results

- Policy gradient is *stochastic gradient*

\[\theta_{k+1} = \theta_k + \alpha_k (\nabla J(\theta_k) + \text{noise}) \]

- \(J \) is non-convex

- \(\implies \) converge asymptotically to a stationary point or a local minimum (under standard technical assumptions)

 what is the *quality* of this point?
Policy gradient is *stochastic gradient*

\[\theta_{k+1} = \theta_k + \alpha_k (\nabla J(\theta_k) + \text{noise}) \]

- \(J \) is *non-convex*
- \(J \) converge asymptotically to a stationary point or a local minimum *(under standard technical assumptions)*

what is the *quality* of this point?

Dynamics are linear (LQ systems) \(\implies \) global convergence [Fazel et al., 2018]

Surprising since \(\min_{\pi} J_{LQ}(\pi) \) may be not convex, quasi-convex, and star-convex
but (far from boundaries) \(J_{LQ} \) is “almost” smooth

Hints: use properties of functions that are gradient dominated
Convergence Results

Issues

- **Non-convexity of the loss function**
- **Unnatural policy parameterization**: parameters that are far in Euclidean distance may describe the same policy (*we will talk about this later*)
- **Insufficient exploration**: naive stochastic exploration
- **Large variance of stochastic gradients**: generally increases with the length of the horizon

Solution:

\[\Rightarrow \]

Similar to LQ, we need structural assumptions [Bhandari and Russo, 2019]

See also [Zhang et al., 2019] for convergence results
Convergence Results

Issues

- **Non-convexity of the loss function**
- **Unnatural policy parameterization:** parameters that are far in Euclidean distance may describe the same policy (*we will talk about this later*)
- **Insufficient exploration:** naive stochastic exploration
- **Large variance of stochastic gradients:** generally increases with the length of the horizon

Solution:

⇒ similar to LQ, we need structural assumptions [Bhandari and Russo, 2019]

See also [Zhang et al., 2019] for convergence results
Convergence Results: Structural Properties
[Bhandari and Russo, 2019]

Let $\Pi_\theta = \{\pi_\theta | \theta \in \Theta\}$ being the space of parametrized policies

1. Closure under policy improvement

$$\forall \pi \in \Pi_\theta, \ \exists \pi^+ \in \Pi_\theta \quad \text{s.t.} \quad \pi^+ \in \arg \max q^\pi$$

2. Convexity of policy improvement steps

$$q^\pi (s, a) \text{ is convex in } a$$

3. Convexity of the policy class Π_θ

soft policy-iteration update $(1 - \alpha)\pi + \alpha\pi^+$ is feasible

4. Regularity conditions

 e.g., compactness of S, existence and continuity of derivatives w.r.t. θ, etc.
Global convergence

- Consider the structural properties
- Consider infinite-horizon discounted problems
Global convergence

- Consider the structural properties
- Consider infinite-horizon discounted problems

No suboptimal stationary points by following a specific ascent direction

\[\Rightarrow \text{global convergence} \] [Bhandari and Russo, 2019]
Consider the structural properties

Consider infinite-horizon discounted problems

No suboptimal stationary points by following a specific ascent direction

\[\Rightarrow \text{global convergence} \] [Bhandari and Russo, 2019]

Idea:

\[\pi_{\theta_\alpha} := (1 - \alpha)\pi_\theta + \alpha\pi_{\theta'} \in \Pi_\theta \]

\(\alpha \in [0, 1] \) defines a line in the policy space

What is the direction to follow in the parameter space?
Global convergence

- Consider the structural properties
- Consider infinite-horizon discounted problems

No suboptimal stationary points by following a specific ascent direction

$$\implies \text{global convergence} \ [\text{Bhandari and Russo, 2019}]$$

Idea:

$$\pi_{\theta, \alpha} := (1 - \alpha) \pi_\theta + \alpha \pi_{\theta'} \in \Pi_\theta$$

$$\alpha \in [0, 1]$$ defines a line in the policy space

What is the direction to follow in the parameter space?

find \(u \) such that the directional derivative of \(\pi' \) points in the direction of \(\pi' \) (smooth curve in the parameter space)

Follow the directional derivative between \(\pi_{\theta_k} \) and \(\pi_{k+} \)
Global convergence

- Consider the structural properties
- Consider infinite-horizon discounted problems

No suboptimal stationary points by following a specific ascent direction

$$\implies \text{global convergence} [\text{Bhandari and Russo, 2019}]$$

Idea:

$$\pi_{\theta_\alpha} := (1 - \alpha)\pi_\theta + \alpha\pi_{\theta'} \in \Pi_\theta$$

$\alpha \in [0, 1]$ defines a line in the policy space

What is the direction to follow in the parameter space?

Find u such that the *directional derivative* of π' points in the direction of π' (smooth curve in the parameter space)

Follow the directional derivative between π_{θ_k} and π_{k+}^+

Forward connection: conservative policy iteration and adaptive gradient
Actor-Critic
REINFORCE

- Monte-Carlo policy gradient is unbiased but still has high variance
Monte-Carlo policy gradient is unbiased but _still_ has high variance. Define an alternative estimate of $q^\pi(s, a) \implies$ actor-critic

- **Critic**: estimate the value function
- **Actor**: update the policy in the direction suggested by the critic
Actor-Critic

- Actor-critic algorithms maintain two sets of parameters: $\theta \mapsto \pi, \omega \mapsto q^\pi$
- **Critic can use TD(0)**

```latex
for t = 1, \ldots, T do
    a_t \sim \pi^\theta(s_t, \cdot) \text{ and observer } r_t \text{ and } s_{t+1}
    \text{Compute temporal difference}
    \delta_t = r_t + \gamma q_\omega(s_{t+1}, a_{t+1}) - q_\omega(s_t, a_t)
    \text{Update } q \text{ estimate}
    \omega = \omega + \beta \delta_t \nabla_\omega q_\omega(x_t, a_t)
    \text{Update policy}
    \theta = \theta + \alpha \nabla_\theta \log \pi_\theta(s_t, a_t) q_\omega(s_t, a_t)
end
```

TD(0) is a semi-gradient approach [Baird, 1995, Sutton, 2015]
Issues:

- \(q_\omega(s, a) \) is a biased estimate of \(q^{\pi_\theta}(s, a) \)
- The update of \(\theta \) may not follow the gradient of \(\nabla_\theta J(\pi_\theta) \)

Solution:

- Choose the approximation space \(q_\omega(s, a) \) carefully
 \(\Longrightarrow \) **compatible function** approximation between \(q_\omega \) and \(\pi_\theta \)
Compatible Function Approximation

Theorem

An action value function space \(q_\omega \) is compatible with a policy space \(\pi_\theta \) if

\[
q_\omega(s, a) = \omega^T \nabla_\theta \log \pi_\theta(s, a)
\]

If \(\omega \) minimizes the squared Bellman residual

\[
\omega = \arg \min_\omega \mathbb{E}_{s \sim d_\pi} \left[\sum_a \pi_\theta(s, a) (q^{\pi_\theta}(s, a) - q_\omega(s, a))^2 \right]
\]

Then

\[
\nabla_\theta J(\pi_\theta) = \mathbb{E}_{s \sim d_\pi} \mathbb{E}_{a \sim \pi_\theta} [\nabla_\theta \log \pi_\theta(s, a) q_\omega(s, a)]
\]
Actor-Critic with a baseline

\[\nabla_\theta J(\pi_\theta) = \mathbb{E}_{s \sim d^\pi_\theta} \left[\sum a \nabla_\theta \pi_\theta(s, a)(q^\pi_\theta(s, a) - b(s)) \right] \]

- \(b(s) \) minimizes the variance
- \(v^\pi(s) \) is a good choice as baseline
 - it minimizes the variance in average reward [Bhatnagar et al., 2009]
- \(A^\pi(s, a) = q^\pi(s, a) - v^\pi(s) \) is the advantage function
Actor-Critic with advantage function

- It is possible to estimate v^π and q^π \textit{independently} (e.g., by TD(0))
Actor-Critic with advantage function

- It is possible to estimate v^π and q^π independently (e.g., by TD(0))
- $A^\pi = q_\omega - v_\nu$ is a biased and unstable estimate
Actor-Critic with advantage function

- It is possible to estimate v^π and q^π independently (e.g., by TD(0))
- $A^\pi = q_\omega - v_\nu$ is a biased and unstable estimate

Solution:

- Consider the temporal difference error

$$\delta^{\pi\theta} = r(s, a) + \gamma v^{\pi\theta}(s') - v^{\pi\theta}(s)$$
Actor-Critic with advantage function

- It is possible to estimate v^π and q^π independently (e.g., by TD(0))
- $A^\pi = q_\omega - v_\nu$ is a biased and unstable estimate

Solution:

- Consider the temporal difference error

$$
\delta^\pi_{\theta} = r(s, a) + \gamma v^\pi_{\theta}(s') - v^\pi_{\theta}(s)
$$

- δ^π_{θ} is an unbiased estimate of the advantage

$$
\mathbb{E}[\delta^\pi_{\theta} | s, a] = \mathbb{E}[r(s, a) + \gamma v^\pi_{\theta}(s') | s, a] - v^\pi_{\theta}(s) = q^\pi_{\theta}(s, a) - v^\pi_{\theta}(s)
$$
Actor-Critic with advantage function

- Estimate only $v_{\nu} \mapsto \delta_{\nu} = r + \gamma v_{\nu}(s') - v_{\nu}(s)$

Convergence results with compatible function approximation [Bhatnagar et al., 2009]

for $t = 1, \ldots, T$ do

- $a_t \sim \pi^\theta(s_t, \cdot)$ and observer r_t and s_{t+1}

 Compute temporal difference

 $$\delta_t = r_t + \gamma v_{\nu}(s_{t+1}) - v_{\nu}(s_t)$$

- Update v estimate

 $$v = \omega + \beta \delta_t \nabla\nu v_{\nu}(s_t)$$

- Update policy

 $$\theta = \theta + \alpha \delta_t \nabla_{\theta} \log \pi_{\theta}(s_t, a_t)$$

end
Several recent methods [Gu et al., 2017, Thomas and Brunskill, 2017, Grathwohl et al., 2018, Liu et al., 2018, Wu et al., 2018] have extended to state-action baselines

\[b(s) \rightarrow b(s, a) \]

👍 unbiased when compatible function approximation is used (proof?)

Is really working? See [Tucker et al., 2018] for complete investigation!
So far we have observed fully online actor-critic approaches. In some cases it can be inefficient (e.g., for training approximators) → batching.
From online to batch actor-critic

- So far we have observed fully online actor-critic approaches
- In some case it can be *inefficient* (e.g., for training approximators)

 \[\implies \text{batching} \]

1. Sample trajectories \(\tau_i = \{ s_1, a_1, r_1, \ldots, s_{T+1} \} \) using \(\pi_\theta \)

\[
\hat{v}(s_{i,t}) = \sum_{k=t}^{t+p} \gamma^{k-t} r_k + \gamma^p v_\nu(s_{t+p+1}) \quad \text{bootstrapping}
\]
From online to batch actor-critic

- So far we have observed fully online actor-critic approaches.
- In some cases, it can be inefficient (e.g., for training approximators).

$$\Rightarrow \text{batching}$$

1. Sample trajectories $\tau_i = \{s_1, a_1, r_1, \ldots, s_{T+1}\}$ using π_θ

$$\hat{v}(s_{i,t}) = \sum_{k=t}^{t+p} \gamma^{k-t} r_k + \gamma^p v_\nu(s_{t+p+1}) \quad \text{bootstrapping}$$

2. Use supervised regression on $D = \{(s_{i,t}, \hat{v}(s_{i,t}))\}$

$$\arg \min_{\nu} \frac{1}{2} \sum_{(s,\hat{v}) \in D} (v_\nu(s) - \hat{v})^2$$
Sample Efficiency in Actor-Critic

Issues:

- Sample efficiency is pretty poor
- All samples need to be generated by the current policy (on-policy learning)
- Samples are \textit{discarded} after a single update
Sample Efficiency in Actor-Critic

Issues:
- Sample efficiency is pretty poor
- All samples need to be generated by the current policy (*on-policy learning*)
- Samples are *discarded* after a single update

Solutions
- Use samples from other policies via *importance sampling* (*not very stable*)
- *Conservative approaches*
- Variance reduction techniques
- Newton or Quasi-newton methods
Off-policy Policy Gradient

- Usual approach [Wang et al., 2017]
 - Store observed samples (a.k.a. replay buffer)
 - Off-policy policy evaluation is “easy” (cf. LSTDQ [Lagoudakis and Parr, 2003a])

\[\pi_k \mapsto v^{\pi_k} \]
Off-policy Policy Gradient

- Usual approach [Wang et al., 2017]
 - Store observed samples (a.k.a. replay buffer)
 - Off-policy policy evaluation is “easy” (cf. LSTDQ [Lagoudakis and Parr, 2003a])

\[\pi_k \mapsto v^{\pi_k} \]

Issue:

- The estimate of the gradient requires samples from \(\pi_\theta \)
- Use *importance ratios* to avoid introducing additional bias
Important Weighting

\[\mathbb{E}_{x \sim p}[f(x)] = \mathbb{E}_{x \sim q}\left[\frac{p(x)}{q(x)}f(x)\right] \approx \mu_q = \frac{1}{N} \sum_{i=1}^{N} \frac{p(x_i)}{q(x_i)}f(x_i), \quad x_i \sim q \]
Importance Weighting

\[\mathbb{E}_{x \sim p}[f(x)] = \mathbb{E}_{x \sim q} \left[\frac{p(x)}{q(x)} f(x) \right] \approx \mu_q = \frac{1}{N} \sum_{i=1}^{N} \frac{p(x_i)}{q(x_i)} f(x_i), \quad x_i \sim q \]

Variance

\[
\text{var}(\mu_q) = \frac{1}{N} \text{var} \left(\frac{p(x)}{q(x)} f(x) \right) \\
= \frac{1}{N} \left(\mathbb{E}_{x \sim p} \left[\frac{p(x)}{q(x)} f(x)^2 \right] - \mathbb{E}_{x \sim p}[f(x)]^2 \right)
\]

The term in red may explode!
Importance Weighting in Policy Gradient
[Jurcícek, 2012, Degris et al., 2012]

\[\nabla_{\theta} J(\pi_\theta) = \mathbb{E}_{\tau \sim \beta} \left[\frac{\mathbb{P}(\tau | \pi_\theta)}{\mathbb{P}(\tau | \beta)} \sum_{t=1}^{T} \gamma^{t-1} \nabla_{\theta} \log \pi_\theta(s_t, a_t) q^{\pi_\theta}(s_t, a_t) \right] \]

what’s the issue?

Partial fixes: clipping, normalization, etc.

Off-policy RL is still a relevant open problem
Importance Weighting in Policy Gradient

[Jurcicek, 2012, Degris et al., 2012]

\[\nabla_{\theta} J(\pi_\theta) = \mathbb{E}_{\tau \sim \beta} \left[\frac{\mathbb{P}(\tau|\pi_\theta)}{\mathbb{P}(\tau|\beta)} \sum_{t=1}^{T} \gamma^{t-1} \nabla_{\theta} \log \pi_\theta(s_t, a_t) q_\theta^\pi(s_t, a_t) \right] \]

What’s the issue? Exploding or vanishing importance weights

\[\omega(\beta, \pi_\theta|\tau) := \frac{\mathbb{P}(\tau|\pi_\theta)}{\mathbb{P}(\tau|\beta)} = \frac{\rho(s_1) \prod_{t=1}^{T} p(s_{t+1}|s_t, a_t) \pi_\theta(s_t, a_t)}{\rho(s_1) \prod_{t=1}^{T} p(s_{t+1}|s_t, a_t) \beta(s_t, a_t)} = \prod_{t=1}^{T} \frac{\pi_\theta(s_t, a_t)}{\beta(s_t, a_t)} \]

Partial fixes: clipping, normalization, etc.

Off-policy RL is still a relevant open problem
Sample efficiency through variance-reduced gradient
Variance-reduced gradient estimator

Can we do something better?

Visualization idea from Bach [2016]
SVRG [Johnson and Zhang, 2013]

Stochastic Variance-Reduced Gradient

A solution from finite-sum optimization:

\[
\max_{\theta} J(\theta) = \sum_{i=1}^{N} f_i(\theta)
\]

- Unbiased
- Linear convergence

SVRG estimator

\[\nabla J(\theta) = \nabla J(\tilde{\theta}) + \nabla f_i(\theta) - \nabla f_i(\tilde{\theta})\]

FG (snapshot)

SG in current parameter

Correction term

More data-efficient than FG

Supervised Learning (SL)
Algorithm 1 SVRG

Input: a dataset \mathcal{D}_N, number of epochs S, epoch size m, step size α, initial parameter $\theta^0_m := \tilde{\theta}^0$

for $s = 0$ to $S - 1$ do

$\theta^{s+1}_0 := \tilde{\theta}^s = \theta^s_m$

$\tilde{\mu} = \nabla f(\tilde{\theta}^s)$

for $t = 0$ to $m - 1$ do

$x \sim \mathcal{U}(\mathcal{D}_N)$

$v_{t+1}^{s+1} = \tilde{\mu} + \nabla z(x|\theta^{s+1}_t) - \nabla z(x|\tilde{\theta}^s)$

$\theta^{s+1}_{t+1} = \theta^{s+1}_t + \alpha v_{t+1}^{s+1}$

end for

end for

Concave case: return θ^S_m

Non-Concave case: return θ^{s+1}_t with (s, t) picked uniformly at random from $\{[0, S - 1] \times [0, m - 1]\}$
SVRG for RL: SVRPG

Issues in RL:
- non-concavity
- infinite dataset
- non-stationarity: $\tau \sim \pi_{\theta}$

Solution:

\[
\nabla J(\theta) = \nabla_{N} J(\tilde{\theta}) + \nabla_{B} J(\theta) - \omega(\theta, \tilde{\theta}) \nabla_{B} J(\tilde{\theta})
\]

SVRPG estimator

Large N to approximate FG

Importance weighting for non-stationarity

epoch

iteration
For $s = 1, \ldots$

Sample N trajectories using $\tilde{\theta}$

Compute $\text{FG} = \hat{\nabla}_N J(\tilde{\theta})$

For $t = 1, \ldots, m$

Sample B trajectories using θ

Compute $\text{SG} = \hat{\nabla}_B J(\theta)$

Compute correction $= \omega(\theta, \tilde{\theta}) \hat{\nabla}_B J(\tilde{\theta})$

Update $\theta \leftarrow \theta + \alpha \nabla J(\theta)$

Update $\tilde{\theta} \leftarrow \theta$

iteration

epoch
Importance sampling may reintroduce variance (use all the tricks)

(a) SVRPG vs G(PO)MDP on Cart-pole.

(b) Self-Normalized SVRPG vs SVRPG on Swimmer.

(c) Self-Normalized SVRPG vs G(PO)MDP on Swimmer.
Conservative Approaches
Relative Performance

Issues:
- We would like to exploit past samples
- We do not know how much to trust them
- Depends on the distribution over trajectories induced by different policies
Relative Performance

Issues:
- We would like to exploit past samples
- We do not know how much to trust them
- Depends on the distribution over trajectories induced by different policies

Performance-Difference Lemma

[Burnetas and Katehakis, 1997, Prop. 1], [Kakade and Langford, 2002, Lem. 6.1], [Cao, 2007]

For any policies \(\pi, \pi' \in \Pi^{SR} \)

\[
J(\pi') - J(\pi) = \sum_{s,a} d^{\pi'}(s,a) A^\pi(s,a)
\]

\[
= \sum_s d^{\pi'}(s) \sum_a \pi'(s,a) A^\pi(s,a)
\]
Proof

\[\mathbb{E}_{(s,a) \sim d^\pi'} [A^\pi (s, a)] = \mathbb{E}_{(s,a) \sim d^\pi'} [q^\pi (s, a) - v^\pi (s)] \]

\[= \mathbb{E}_{(s,a) \sim d^\pi'} [r(s, a)] + \mathbb{E}_{(s,a) \sim d^\pi'} \left[\gamma \sum_y p(y | s, a) v^\pi (y) - v^\pi (s) \right] \]

\[= J(\pi') + \mathbb{E}_{(s,a) \sim d^\pi'} \left[\gamma \sum_y p(y | s, a) v^\pi (y) \right] - \mathbb{E}_{s \sim d^\pi'} [v^\pi (s)] \]
Proof

\[\mathbb{E}_{(s,a) \sim d^\pi'} [A^\pi (s, a)] = \mathbb{E}_{(s,a) \sim d^\pi'} [q^\pi (s, a) - v^\pi (s)] \]

\[= \mathbb{E}_{(s,a) \sim d^\pi'} [r (s, a)] + \mathbb{E}_{(s,a) \sim d^\pi'} \left[\gamma \sum_y p(y|s,a) v^\pi (y) - v^\pi (s) \right] \]

\[= J(\pi') + \mathbb{E}_{(s,a) \sim d^\pi'} \left[\gamma \sum_y p(y|s,a) v^\pi (y) \right] - \mathbb{E}_{s \sim d^\pi'} [v^\pi (s)] \]

\[= \sum_s \left(\sum_{k=0}^{+\infty} \gamma^k \mathbb{P}(s_1 \rightarrow s, k, \pi', \rho) \right) \gamma \sum_{a,y} \pi'(s, a) p(y|s,a) v^\pi (y) \]

\[= \sum_y \left(d^\pi' (y) - \underbrace{\mathbb{P}(s_1 \rightarrow y, 0, \pi, \rho)}_{:= \rho(y)} \right) v^\pi (y) \]
Proof

\[\mathbb{E}_{(s,a) \sim d^{\pi^*}} [A^{\pi^*}(s, a)] = \mathbb{E}_{(s,a) \sim d^{\pi^*}} [q^{\pi^*}(s, a) - v^{\pi^*}(s)] \]

\[= \mathbb{E}_{(s,a) \sim d^{\pi^*}} [r(s, a)] + \mathbb{E}_{(s,a) \sim d^{\pi^*}} \left[\gamma \sum_y p(y|s, a) v^{\pi^*}(y) - v^{\pi^*}(s) \right] \]

\[= J(\pi^*) + \mathbb{E}_{(s,a) \sim d^{\pi^*}} \left[\gamma \sum_y p(y|s, a) v^{\pi^*}(y) \right] - \mathbb{E}_{s \sim d^{\pi^*}} [v^{\pi^*}(s)] \]

\[= \sum_s \left(\sum_{k=0}^{+\infty} \gamma^k \mathbb{P}(s_1 \rightarrow s, k, \pi', \rho) \right) \gamma \sum_{a,y} \pi'(s, a) p(y|s, a) v^{\pi^*}(y) \]

\[= \sum_y \left(d^{\pi'}(y) - \mathbb{P}(s_1 \rightarrow y, 0, \pi, \rho) \right) v^{\pi^*}(y) \]

\[:= \rho(y) \]

\[= J(\pi^*) + \sum_y d^{\pi'}(y) v^{\pi^*}(y) - \sum_y \rho(y) v^{\pi^*}(y) - \mathbb{E}_{s \sim d^{\pi^*}} [v^{\pi^*}(s)] \]
Optimization step

\[
\max_{\pi'} J(\pi')
\]

Issue: as before, cannot be directly estimated using information from \(\pi\).
Optimization step

\[
\max_{\pi'} J(\pi') = \max_{\pi'} J(\pi') - J(\pi)
\]

Issue: as before, cannot be directly estimated using information from \(\pi\)
Optimization step

\[
\max_{\pi'} J(\pi') = \max_{\pi'} J(\pi') - J(\pi)
\]
\[
= \max_{\pi'} \mathbb{E}_{(s,a) \sim d_{\pi'}} [A^{\pi}(s,a)]
\]

Issue: as before, cannot be directly estimated using information from \(\pi\)
Optimization step

\[J(\pi') - J(\pi) = \mathbb{E}_{s \sim d^{\pi}} \left[\sum_a \pi'(s, a) A^{\pi}(s, a) \right] + \sum_s (d^{\pi'}(s) - d^{\pi}(s)) \sum_a \pi'(s, a) A^{\pi}(s, a) \]
Optimization step

\[J(\pi') - J(\pi) = \mathbb{E}_{s \sim d_\pi} \left[\sum_a \pi'(s, a) A^\pi(s, a) \right] + \sum_s \left(\frac{d'(s) - d(\pi)}{} \right) \sum_a \pi'(s, a) A^\pi(s, a) \]

\[\geq \mathbb{E}_{s \sim d_\pi} \left[\sum_a \pi'(s, a) A^\pi(s, a) - \frac{\gamma \varepsilon}{(1 - \gamma)^2} D_{TV}(\pi' \parallel \pi)[s] \right] \]

where \(\varepsilon = \max_s \left| \mathbb{E}_{a \sim \pi'}[A^\pi(s, a)] \right| \) and

\[D_{TV}(\pi' \parallel \pi)[s] = \sum_a |\pi'(s, a) - \pi(s, a)| \]
Surrogate Loss

\[L_\pi(\pi') = J(\pi) + \sum_s d^\pi(s) \sum_a \pi'(s, a) A^\pi(s, a) \]

- \(L_\pi(\pi) = J(\pi) \)
- If parametric policies \(\pi = \pi_\theta \), \(\nabla_\theta L_{\pi_\theta}(\pi_\theta) = \nabla_\theta J(\pi_\theta) \)

in an interval close to \(\pi \), \(L_\pi \) is a good surrogate for \(J \)

\[\implies \text{Conservative Policy Iteration} \quad [\text{Kakade and Langford, 2002}] \]
Surrogate Loss

\[L_{\pi}(\pi') = J(\pi) + \sum_s d^{\pi}(s) \sum_a \pi'(s, a) A^{\pi}(s, a) - \sum_s d^{\pi}(s) \frac{\gamma \varepsilon}{(1 - \gamma)^2} D_{TV}(\pi' || \pi)[s] \]

- \(L_{\pi}(\pi) = J(\pi) \)
- If parametric policies \(\pi = \pi_{\theta} \), \(\nabla_{\theta} L_{\pi_{\theta}}(\pi_{\theta}) = \nabla_{\theta} J(\pi_{\theta}) \)

! in an interval close to \(\pi \), \(L_{\pi} \) is a good surrogate for \(J \)

\[\implies \text{Conservative Policy Iteration} \] [Kakade and Langford, 2002]
Conservative Policy Iteration

- New policy improvement schema
 - Give current policy π_k, solve

\[
\max_{\pi'} \left\{ L_{\pi_k}(\pi') - C \mathbb{E}_{s \sim d^\pi} [D_{TV}(\pi' || \pi_k)[s]] \right\}
\]
Conservative Policy Iteration

- **New policy improvement schema**
 - Give current policy π_k, solve

 \[
 \max_{\pi'} \left\{ L_{\pi_k}(\pi') - C \mathbb{E}_{s \sim d^\pi} \left[D_{TV}(\pi' \| \pi_k)[s] \right] \right\} \geq 0
 \]
Conservative Policy Iteration

- **New policy improvement schema**
 - Give current policy π_k, solve

\[
J(\pi') - J(\pi_k) \geq \max_{\pi'} \left\{ L_{\pi_k}(\pi') - C \mathbb{E}_{s \sim d^\pi} \left[D_{TV}(\pi'|\pi_k)[s] \right] \right\} \geq 0
\]
Conservative Policy Iteration

- **New policy improvement schema**
 - Give current policy π_k; solve

\[
J(\pi') - J(\pi_k) \geq \max_{\pi'} \left\{ L_{\pi_k}(\pi') - C \mathbb{E}_{s \sim d^\pi} [D_{TV}(\pi' || \pi_k)(s)] \right\} \geq 0
\]

\[\Rightarrow \text{Monotonic performance improvement}\]
Conservative Policy Iteration

- **New policy improvement schema**
 - Give current policy π_k, solve

 \[
 J(\pi') - J(\pi_k) \geq \max_{\pi'} \left\{ L_{\pi_k}(\pi') - C \mathbb{E}_{s \sim d_{\pi}} \left[D_{TV}(\pi' \parallel \pi_k)[s] \right] \right\} \geq 0
 \]

 Monotonic performance improvement

Several approaches have been proposed [e.g., Kakade and Langford, 2002, Perkins and Precup, 2002, Gabillon et al., 2011, Wagner, 2011, 2013, Pirotta et al., 2013b, Scherrer et al., 2015, Schulman et al., 2015]
Approximate Monotone Improvement

- The objective can be estimated using rollouts from the most recent policy.
- Updates respect a notion of distance in the policy space!

This is the basis for many algorithms!
How to solve the optimization problem?

\[
\max_{\pi'} \left\{ L_{\pi_k}(\pi') - C \mathbb{E}_{s \sim d^\pi} \left[D_{TV}(\pi' \| \pi_k)[s] \right] \right\}
\]
How to solve the optimization problem?

\[
\max_{\pi'} \left\{ L_{\pi_k}(\pi') - C \mathbb{E}_{s \sim d^\pi} \left[D_{TV}(\pi'\|\pi_k)[s] \right] \right\}
\]

In discrete MDP with convex policy update

\[
\pi_{k+1} = \alpha \bar{\pi} + (1 - \alpha) \pi_k
\]

where \(\bar{\pi}\) is the greedy policy

\(\implies\) closed form solution for \(\alpha\)

\(\implies\) guaranteed improvement
Conservative in Continuous MDPs

- Consider parametrized policies $\theta \mapsto \pi_\theta$
- Construct a *lower bound* to $J(\theta + \Delta\theta) - J(\theta)$
 - e.g., [Pirotta et al., 2013, Papini et al., 2017]
Consider parametrized policies $\theta \mapsto \pi_\theta$

Construct a lower bound to $J(\theta + \Delta \theta) - J(\theta)$
- e.g., [Pirotta et al., 2013, Papini et al., 2017]

If Π_θ is a smoothing policy class [Papini et al., 2019]
(as a consequence of quadratic bound for L-smooth functions)

$$\forall \theta, \theta' \quad J(\theta') - J(\theta) \geq (\theta' - \theta)^T \nabla_\theta J(\theta) - \frac{L}{2} \|\theta' - \theta\|^2_2$$
Consider parametrized policies $\theta \mapsto \pi_\theta$

Construct a lower bound to $J(\theta + \Delta \theta) - J(\theta)$

- e.g., [Pirotta et al., 2013, Papini et al., 2017]

If Π_θ is a smoothing policy class [Papini et al., 2019]
(as a consequence of quadratic bound for L-smooth functions)

\[\forall \theta, \theta' \quad J(\theta') - J(\theta) \geq (\theta' - \theta)^T \nabla_\theta J(\theta) - \frac{L}{2} \|\theta' - \theta\|^2 \]

\[= \alpha \|\nabla_\theta J(\theta)\|^2 - \alpha^2 \frac{L}{2} \|\nabla_\theta J(\theta)\|^2 \]

by using gradient update rule $\theta' = \theta + \alpha \nabla_\theta J(\theta)$
Consider parametrized policies $\theta \mapsto \pi_\theta$

Construct a lower bound to $J(\theta + \Delta \theta) - J(\theta)$
- e.g., [Pirotta et al., 2013, Papini et al., 2017]

If Π_θ is a smoothing policy class [Papini et al., 2019]
(as a consequence of quadratic bound for L-smooth functions)

$$
\forall \theta, \theta' \quad J(\theta') - J(\theta) \geq (\theta' - \theta)^T \nabla_\theta J(\theta) - \frac{L}{2} \|\theta' - \theta\|^2_2
$$

$$
= \alpha \|\nabla_\theta J(\theta)\|^2_2 - \alpha^2 \frac{L}{2} \|\nabla_\theta J(\theta)\|^2_2
$$

by using gradient update rule $\theta' = \theta + \alpha \nabla_\theta J(\theta)$

$$
\implies \alpha^* = \frac{1}{L} \quad \implies \text{Monotonic policy performance improvement}
$$
Conservative Approaches: Approximation

- Can be extended to handle *approximate estimate*
 \[\| A(s, a) - \hat{A}(s, a) \| \leq \epsilon \quad \text{and/or} \quad \| \nabla J(\theta) - \hat{\nabla} J(\theta) \| \leq \epsilon \]

- Need to change the stopping condition to *account for the finite-sample error*
Conservative Approaches: Approximation

- Can be extended to handle *approximate estimate*

\[\|A(s, a) - \hat{A}(s, a)\| \leq \epsilon \quad \text{and/or} \quad \|\nabla J(\theta) - \hat{\nabla} J(\theta)\| \leq \epsilon \]

- Need to change the stopping condition to *account for the finite-sample error*

Example: \(\hat{\nabla}_N J(\theta) \) estimate of the gradient using \(N \) trajectories. Then *whp*

\[\|\nabla J(\theta) - \hat{\nabla}_N J(\theta)\| \leq \frac{\epsilon \delta}{\sqrt{N}} \]

As a consequence, *whp*

\[J(\theta') - J(\theta) \geq \alpha \left(\|\nabla_\theta J(\theta)\|_2^2 - \frac{\epsilon^2 \delta}{N} \right) - \alpha^2 \frac{L}{2} \|\nabla_\theta J(\theta)\|_2^2 \]
Conservative Approaches: Approximation

- Can be extended to handle *approximate estimate*

\[\|A(s, a) - \hat{A}(s, a)\| \leq \epsilon \quad \text{and/or} \quad \|\nabla J(\theta) - \hat{\nabla} J(\theta)\| \leq \epsilon \]

- Need to change the stopping condition to *account for the finite-sample error*

Example: \(\hat{\nabla}_N J(\theta) \) estimate of the gradient using \(N \) trajectories. Then *whp*

\[\|\nabla J(\theta) - \hat{\nabla}_N J(\theta)\| \leq \frac{\epsilon \delta}{\sqrt{N}} \]

As a consequence, *whp*

\[J(\theta') - J(\theta) \geq \alpha \left(\|\nabla_{\theta} J(\theta)\|_2^2 - \frac{\epsilon^2 \delta}{N} \right) - \alpha^2 \frac{L}{2} \|\nabla_{\theta} J(\theta)\|_2^2 \]

+ possibility to adapt also \(N \)
Toward Practical Algorithm

- Optimizing the total variation $D_{TV}(\pi'\|\pi)$ may be difficult

- Relax the problem using Pinsker’s inequality [Csiszar and Körner, 2011]

$$D_{TV}(\pi'\|\pi) \leq \sqrt{2D_{KL}(\pi'\|\pi)}$$

* implicitly done in the analysis of conservative gradient
Kullback–Leibler divergence

Given two probability distributions P and Q

$$D_{KL}(P\|Q) = \sum_x P(x) \log \frac{P(x)}{Q(x)}$$

Properties:

- $D_{KL}(P\|Q) \geq 0$
- $D_{KL}(Q\|Q) = 0$
- $D_{KL}(P\|Q) \neq D_{KL}(Q\|P)$ (non-symmetric)
- No triangle inequality

Note: Réni divergences provide generalizations of the KL divergence
Further Steps toward Practical Algorithms

- C' provided by theory is quite high (*too conservative*)
- Replace regularization with constraint (*trust region*) (e.g., REPS [Peters et al., 2010])

$$\pi_{k+1} = \arg \max_{\pi'} L_\pi(\pi')$$

$$\text{s.t. } \mathbb{E}_{s \sim d_\pi} [D_{KL}(\pi' || \pi)] \leq \delta$$
Further Steps toward Practical Algorithms

- C' provided by theory is quite high (too conservative)
- Replace regularization with constraint (trust region) (e.g., REPS [Peters et al., 2010])

$$
\pi_{k+1} = \arg \max_{\pi'} L_\pi(\pi')
$$

$$\text{s.t. } \mathbb{E}_{s \sim d_\pi} [D_{KL}(\pi' \| \pi)] \leq \delta$$

- Importance weighting

$$
\mathbb{E}_{s \sim d_\pi} \mathbb{E}_{a \sim \pi'} [A_\pi(s, a)] = \mathbb{E}_{s \sim d_\pi} \mathbb{E}_{a \sim z} \left[\frac{\pi'(s, a)}{z(s, a)} A_\pi(s, a) \right]
$$
Further Steps toward Practical Algorithms

- C provided by theory is quite high (too conservative)
- Replace regularization with constraint (trust region) (e.g., REPS [Peters et al., 2010])

$$\pi_{k+1} = \arg \max_{\pi'} L_\pi(\pi')$$
$$\text{s.t. } \mathbb{E}_{s \sim d_\pi} [D_{KL}(\pi'\|\pi)] \leq \delta$$

- Importance weighting

$$\mathbb{E}_{s \sim d_\pi} \mathbb{E}_{a \sim \pi'} [A^\pi(s, a)] = \mathbb{E}_{s \sim d_\pi} \mathbb{E}_{a \sim z} \left[\frac{\pi'(s, a)}{z(s, a)} A^\pi(s, a) \right]$$

- Replace A^π with q^π and remove $J(\pi)$

$$\pi_{k+1} = \arg \max_{\pi'} \mathbb{E}_{s \sim d_\pi} \mathbb{E}_{a \sim z} \left[\frac{\pi'(s, a)}{z(s, a)} q^\pi(s, a) \right]$$
$$\text{s.t. } \mathbb{E}_{s \sim d_\pi} [D_{KL}(\pi'\|\pi)] \leq \delta$$

$$\implies$$ Trust-Region Policy Optimization (TRPO) [Schulman et al., 2015]
Beyond Simple Gradient Descent
Gradient Descent

Steepest descent direction of a function $h(\theta) \rightarrow -\nabla h(\theta)$

- It yields the **most reduction** in h per unit of change in θ
- Change is measured using the standard **Euclidean norm** $\| \cdot \|$

\[
\frac{-\nabla h}{\|\nabla h\|} = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \arg \min_{d: \|d\| \leq \epsilon} \{ h(\theta + d) \}
\]

Is the Euclidean norm the best metric? Can we use an alternative definition of (local) distance?\[\Rightarrow\] as suggested by [Amari, 1998] it is better to define a metric based not on the choice of the coordinates but rather on the manifold these coordinates parametrize! (Example: gradient descent is not affine invariant)
Gradient Descent

Steepest descent direction of a function $h(\theta) \rightarrow -\nabla h(\theta)$

- It yields the *most reduction* in h per unit of change in θ
- Change is measured using the standard *Euclidean norm* $\| \cdot \|$

$$\frac{-\nabla h}{\|\nabla h\|} = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \arg \min_{d: \|d\| \leq \epsilon} \{ h(\theta + d) \}$$

Is the Euclidean norm the best metric?
Can we use an alternative definition of *(local)* distance?
Gradient Descent

Steepest descent direction of a function $h(\theta) \rightarrow -\nabla h(\theta)$

- It yields the *most reduction* in h per unit of change in θ
- Change is measured using the standard *Euclidean norm* $\| \cdot \|$

\[
\frac{-\nabla h}{\| \nabla h \|} = \lim_{\epsilon \rightarrow 0} \frac{1}{\epsilon} \arg \min_{d: \|d\| \leq \epsilon} \{ h(\theta + d) \}
\]

Is the Euclidean norm the best metric?
Can we use an alternative definition of *(local)* distance?

\[\Rightarrow \quad \text{as suggested by [Amari, 1998] it is better to } \textit{define a metric} \text{ based not on the choice of the coordinates but rather } \textit{on the manifold these coordinates parametrize}! \]

(Example: gradient descent is not affine invariant)
Natural Gradient

In Riemannian space, the distance is defined as

$$d^2(v, v + \delta v) = \delta v^T G(v) \delta v$$

where G is the metric tensor
Natural Gradient

- In Riemannian space, the distance is defined as

\[d^2(v, v + \delta v) = \delta v^T G(v) \delta v^T \]

where \(G \) is the metric tensor

Example: consider the Euclidean space \((\mathbb{R}^2)\)
- Cartesian coordinate, the metric tensor is the identity
- Polar coordinate

\[x = r \cos \theta \implies \delta x = \delta r \cos \theta - r \delta \theta \sin \theta \]
\[y = r \sin \theta \implies \delta y = \delta r \sin \theta + r \delta \theta \cos \theta \]
\[d^2(v, v + \delta v) = \delta x^2 + \delta y^2 = \delta r^2 + r^2 \delta \theta^2 = (\delta r, \delta \theta)^T \text{diag}(1, r^2) (\delta r, \delta \theta) \]
Natural Gradient

The steepest descent in a Riemannian is given by

\[\tilde{\nabla} h(\theta) = G(\theta)^{-1} \nabla h(\theta) \]
Natural Gradient

The steepest descent in a Riemannian is given by

\[\tilde{\nabla} h(\theta) = G(\theta)^{-1} \nabla h(\theta) \]

Natural gradient can be applied to any objective function

Issue: what is the metric tensor?
Natural Gradient

Natural Gradient [Amari, 1998]

The steepest descent in a Riemannian is given by

\[\tilde{\nabla} h(\theta) = G(\theta)^{-1} \nabla h(\theta) \]

Natural gradient can be applied to any objective function

Issue: what is the metric tensor?

known for many objectives!
The steepest descent in a Riemannian is given by

$$\tilde{\nabla} h(\theta) = G(\theta)^{-1} \nabla h(\theta)$$

Natural gradient can be applied to any objective function

Issue: what is the metric tensor?

known for many objectives!

Maximum Likelihood: we have a probabilistic model represented by its likelihood $p(x|\theta)$

We want to maximize this likelihood function to find the most likely parameter
Consider a Gaussian parameterized by only its mean and keep the variance fixed to 2 and 0.5 for the first and second image respectively.

The distance of those Gaussians are the same, i.e., 4, according to Euclidean metric (red line).

https://wiseodd.github.io/techblog/2018/03/14/natural-gradient/
Fisher Information Matrix

\[F = \mathbb{E}_{x \sim p(\cdot | \theta)} \left[\nabla \log p(x | \theta) \nabla \log p(x | \theta)^T \right] \]

Property 1: Fisher Information Matrix is the Hessian of KL-divergence between two distributions \(p(x | \theta) \) and \(p(x | \theta') \), with respect to \(\theta' \), evaluated at \(\theta = \theta' \)

\[H_{DKL}(p(x | \theta) \| p(x | \theta')) = F \]
Fisher Information Matrix

\[F = \mathbb{E}_{x \sim p(\cdot|\theta)} \left[\nabla \log p(x|\theta) \nabla \log p(x|\theta)^T \right] \]

Property 1: Fisher Information Matrix is the Hessian of KL-divergence between two distributions \(p(x|\theta) \) and \(p(x|\theta') \), with respect to \(\theta' \), evaluated at \(\theta = \theta' \)

\[H_{DKL}(p(x|\theta) || p(x|\theta')) = F \]

Property 2: Second-order Taylor series expansion

\[D_{KL}(p(x|\theta) || p(x|\theta + d)) = d^T F d + O(d^3) \]

(proofs)
For a positive definite matrix \(A \), we have [Ollivier et al., 2017] (def. \(\|x\|_B = \sqrt{x^T B x} \))

\[
- A^{-1} \nabla h \| \nabla h \|_{A^{-1}} = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \arg \min_{d: \|d\|_{A^{-1}} \leq \epsilon} \{ h(\theta + d) \}
\]
For a positive definite matrix A, we have [Ollivier et al., 2017] (def. $\|x\|_B = \sqrt{x^T B x}$)

$$\frac{-A^{-1} \nabla h}{\|\nabla h\|_{A^{-1}}} = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \arg \min_{d: \|d\|_{A^{-1}} \leq \epsilon} \{h(\theta + d)\}$$

$$A = \frac{1}{2} F \implies -\sqrt{2} \frac{\tilde{\nabla} h}{\|\nabla h\|_{F^{-1}}} = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \arg \min_{d: D_{KL}(p(x|\theta)||p(x|\theta+d)) \leq \epsilon^2} \{h(\theta + d)\}$$

Negative natural gradient

- steepest descent direction *in the space of distributions*
- where distance is *(approximately)* measured in local neighborhoods by the KL divergence
Natural Gradient in ML

[Martens, 2014]

For a positive definite matrix A, we have [Ollivier et al., 2017] (def. $\|x\|_B = \sqrt{x^T B x}$)

$$\frac{-A^{-1} \nabla h}{\|\nabla h\|_{A^{-1}}} = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \arg \min_{d: \|d\|_{A^{-1}} \leq \epsilon} \{h(\theta + d)\}$$

$$A = \frac{1}{2} F \implies -\sqrt{2} \frac{\tilde{\nabla} h}{\|\nabla h\|_{F^{-1}}} = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \arg \min_{d: D_{KL}(p(x|\theta)||p(x|\theta+d)) \leq \epsilon^2} \{h(\theta + d)\}$$

Negative natural gradient

- steepest descent direction in the space of distributions
- where distance is (approximately) measured in local neighborhoods by the KL divergence
- $D_{KL}(p(x|\theta)||p(x|\theta+d))$ is locally/asymptotically symmetric as $d \to 0$, and so will be (approximately) symmetric in a local neighborhood [Martens, 2014]
- $\tilde{\nabla} h$ is be invariant to the choice of parameterization

Natural Gradient in ML

[Martens, 2014]

For a positive definite matrix A, we have [Ollivier et al., 2017] (def. $\|x\|_B = \sqrt{x^T B x}$)

$$\frac{-A^{-1} \nabla h}{\|\nabla h\|_{A^{-1}}} = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \arg \min_{d: \|d\|_{A^{-1}} \leq \epsilon} \{h(\theta + d)\}$$

$$A = \frac{1}{2} F \implies -\sqrt{2} \frac{\tilde{\nabla} h}{\|\nabla h\|_{F^{-1}}} = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \arg \min_{d: D_{KL}(p(x|\theta)||p(x|\theta+d)) \leq \epsilon^2} \{h(\theta + d)\}$$

Negative natural gradient

- steepest descent direction in the space of distributions
- where distance is (approximately) measured in local neighborhoods by the KL divergence
- $D_{KL}(p(x|\theta)||p(x|\theta+d))$ is locally/asymptotically symmetric as $d \to 0$, and so will be (approximately) symmetric in a local neighborhood [Martens, 2014]
- $\tilde{\nabla} h$ is be invariant to the choice of parameterization
Natural Policy Gradient

Trust-region objective

\[\pi_{k+1} = \arg \max_{\pi'} L_{\pi_k}(\pi') \]

s.t. \(D_{KL}(\pi'\|\pi_k) \leq \delta \)

Approximate objective and KL

\[L_{\theta_k}(\theta) \approx L_{\theta_k}(\theta_k) + g^T(\theta - \theta_k) \]

\[D_{KL}(\theta\|\theta_k) \approx \frac{1}{2}(\theta - \theta_k)^T F(\theta - \theta_k) \]

\[\theta_{k+1} = \theta_k + \sqrt{\frac{2\delta}{g^T F^{-1} g}} \underbrace{F^{-1} g}_{:= \tilde{\nabla} J} \]

Truncated Natural Policy Gradient

Issues:

- $\theta \in \mathbb{R}^d$, d can be very large (e.g., thousands or millions)
- H or F have dimension d^2
- matrix inversion is $O(d^3)$
Truncated Natural Policy Gradient

Issues:

- $\theta \in \mathbb{R}^d$, d can be very large (e.g., thousands or millions)
- H or F have dimension d^2
- matrix inversion is $O(d^3)$

Solution:

- Use conjugate gradient to compute $F^{-1}g$ without inverting F [Pascanu and Bengio, 2013]
- With j iterations, CG solves systems of equations $Hx = g$ for x by finding projection onto Krylov subspace (i.e., $\text{span}(g, Hg, \ldots H^{j-1}g)$)

\Rightarrow **Truncated Natural Policy Gradient**
Truncated Natural Policy Gradient

Issues:

- $\theta \in \mathbb{R}^d$, d can be very large (e.g., thousands or millions)
- H or F have dimension d^2
- matrix inversion is $O(d^3)$

Solution:

- Use conjugate gradient to compute $F^{-1}g$ without inverting F [Pascanu and Bengio, 2013]
- With j iterations, CG solves systems of equations $Hx = g$ for x by finding projection onto Krylov subspace (i.e., $span(g, Hg, \ldots H^{j-1}g)$)

\implies Truncated Natural Policy Gradient

Other solutions are possible: see ACKTR [Wu et al., 2017], [Ollivier, 2017]
Example: Walker-2d

[Duan et al., 2016]
Discussion

- Natural gradient contains second order informations
- Newton method?
Discussion

- Natural gradient contains second order informations
- Newton method?

The Hessian [Furmston and Barber, 2012, Shen et al., 2019]

\[\nabla^2 J(\theta) = \mathbb{E}_\tau \left[\nabla g(\theta, \tau) \nabla \log \mathbb{P}(\tau|\theta)^T + \nabla^2 g(\theta, \tau) \right] \]

with

\[g(\theta, \tau) = \sum_{h=1}^{H} \sum_{i=h}^{H} \gamma^i r(s_i, a_i) \log \pi_\theta(s_h, a_h) \]
[Furmston and Barber, 2012] noticed a connection between $\mathbb{E}[\nabla^2 g(\theta, \tau)]$ and the FIM!

This hessian can be estimated using first-order information (leading to *quasi Newton approaches*) or *finite difference*.

- see [Shen et al., 2019] also for sample complexity

REINFORCE find an ϵ-approximate first-order stationary point in $O(1/\epsilon^4)$

Hessian aided policy gradient method [Shen et al., 2019] sample complexity of $O(1/\epsilon^3)$
Proximal Policy Optimization
[Schulman et al., 2017b]

- Avoid to compute the natural gradient
- Approximate the KL constraint

Adaptive KL Penalty

Consider regularized optimization problem

$$\theta_{k+1} = \arg \max_{\theta} L_{\theta_k}(\theta) - \lambda_k \mathbb{E}[D_{KL}(\theta \| \theta_k)]$$

Adapt λ_k to enforce KL constraint

$$\lambda_{k+1} = \begin{cases} 2 \lambda_k & \text{if } \mathbb{E}[D_{KL}(\theta \| \theta_k)] \geq 1.5 \\ 2 \frac{\lambda_k}{2} & \text{if } \mathbb{E}[D_{KL}(\theta \| \theta_k)] \leq \frac{\delta}{1.5} \\ \lambda_k & \text{otherwise} \end{cases}$$
Proximal Policy Optimization

[Schulman et al., 2017b]

- Avoid to compute the natural gradient
- Approximate the KL constraint

1. **Adaptive KL Penalty**
 - Consider regularized optimization problem
 \[
 \theta_{k+1} = \arg \max_{\theta} L_{\theta_k}(\theta) - \lambda_k \mathbb{E}[D_{KL}(\theta||\theta_k)]
 \]
 - Adapt \(\lambda_k \) to enforce KL constraint
 \[
 \lambda_{k+1} = \begin{cases}
 2\lambda_k & \text{if } \mathbb{E}[D_{KL}(\theta||\theta_k)] \geq 1.5\delta \\
 \lambda_k/2 & \text{if } \mathbb{E}[D_{KL}(\theta||\theta_k)] \leq \delta/1.5 \\
 \lambda_k & \text{otherwise}
 \end{cases}
 \]
Proximal Policy Optimization
[Schulman et al., 2017b]

2 Clipped Objective

- Recall surrogate objective

\[L^{IS}_{\pi}(\pi') = \mathbb{E}_{s \sim d^\pi} \mathbb{E}_{a \sim \pi} \left[\frac{\pi'(s, a)}{\pi(s, a)} A^\pi(s, a) \right] = \mathbb{E}_{s \sim d^\pi} \mathbb{E}_{a \sim \pi} \left[r_{sa}(\pi') A^\pi(s, a) \right] \]

- Form a lower bound via clipped importance ratios

\[L^{CLIP}_{\pi}(\pi') = \mathbb{E}_{s \sim d^\pi} \mathbb{E}_{a \sim \pi} \left[\min \left\{ r_{sa}(\pi') A^\pi(s, a), \text{clip}(r_{sa}(\pi'), 1 - \epsilon, 1 + \epsilon) A^\pi(s, a) \right\} \right] \]

- \(\pi_{k+1} = \arg \max_{\pi} L^{CLIP}_{\pi_k}(\pi) \)
Proximal Policy Optimization
[Schulman et al., 2017b]

- Clipping prevents policy from moving too much away from θ_k
- Seems to work as well as PPO with KL penalty
- Much simpler to implement

How does it work?

Various objectives as a function of function of α between θ_k and θ_{k+1}
Figure 3: Comparison of several algorithms on several MuJoCo environments, training for one million timesteps.
Non-Parametric Policy Update

- Solve a constrained optimization problem in a non-parameterized policy space
- *Fit a parametric policy* on the best non-parametric policy

⇒ Supervised Policy Update [Vuong et al., 2019]
Non-Parametric Policy Update

- Solve a constrained optimization problem in a non-parameterized policy space
- *Fit a parametric policy* on the best non-parametric policy

$$\implies$$ Supervised Policy Update [Vuong et al., 2019]

1. Sample \(N \) trajectories using policy \(\pi_{\theta_k} \)
 - construct dataset \((s_i, a_i, A_i)\) where \(A_i \approx A^{\pi_k}(s_i, a_i) \)
2. For each \(s_i \) solve the constrained optimization problem
 - obtain a non-parametric policy \(\tilde{\pi} \) defined in each sample \(s_i \)
3. Fit a parametric policy \(\pi_{\theta_{k+1}} \) on \(\pi \)

$$\min_{\theta} \left\{ \mathcal{L}(\theta) = \frac{1}{m} \sum_{i=1}^{m} D_{KL}(\pi_\theta || \tilde{\pi})[s_i] \right\}$$
Example: TRPO optimization problem

Almost closed form solution (up to parameters $\lambda = f(\delta, \epsilon)$)

$$\tilde{\pi}(s, a) \propto \pi_{\theta_k}(s, a) \exp \left[\frac{A^{\pi_{\theta_k}}(s, a)}{\lambda} \right]$$
Non-Parametric Policy Update

Example: TRPO optimization problem
Almost closed form solution (up to parameters $\lambda = f(\delta, \epsilon)$)

$$
\pi(s, a) \propto \pi_{\theta_k}(s, a) \exp \left[\frac{A^{\pi_{\theta_k}}(s, a)}{\lambda} \right]
$$

Then (approximately)

$$
\mathcal{L}(\theta) \approx \frac{1}{m} \sum_{i=1}^{m} \left(\nabla_{\theta} D_{KL}(\pi_{\theta} \parallel \pi_{\theta_k})[s_i] - \frac{1}{\lambda} \frac{\nabla_{\theta} \pi_{\theta}(s_i, a_i)}{\pi_{\theta_k}(s_i, a_i)} A_i \right) \mathbb{1}(D_{KL}(\pi_{\theta} \parallel \pi_{\theta_k})[s_i] \leq \epsilon)
$$
Non-Parametric Policy Update

Example: TRPO optimization problem
Almost closed form solution (up to parameters $\lambda = f(\delta, \epsilon)$)

$$\tilde{\pi}(s, a) \propto \pi_{\theta_k}(s, a) \exp \left[\frac{A_{\pi_{\theta_k}}(s, a)}{\lambda} \right]$$

Then (approximately)

$$\mathcal{L}(\theta) \approx \frac{1}{m} \sum_{i=1}^{m} \left(\nabla_{\theta} D_{KL}(\pi_{\theta} \parallel \pi_{\theta_k})[s_i] - \frac{1}{\lambda} \frac{\nabla_{\theta} \pi_{\theta}(s_i, a_i)}{\pi_{\theta_k}(s_i, a_i)} A_i \right) 1(D_{KL}(\pi_{\theta} \parallel \pi_{\theta_k})[s_i] \leq \epsilon)$$

! minimize by gradient descent and consider λ to be a parameter!
still an actor-critic approach!
Example: TRPO optimization problem

Almost closed form solution (up to parameters $\lambda = f(\delta, \epsilon)$)

$$\tilde{\pi}(s, a) \propto \pi_{\theta_k}(s, a) \exp \left[\frac{A^{\pi_{\theta_k}}(s, a)}{\lambda} \right]$$

Then (approximately)

$$\mathcal{L}(\theta) \approx \frac{1}{m} \sum_{i=1}^{m} \left(\nabla_{\theta} D_{\text{KL}}(\pi_{\theta} || \pi_{\theta_k})[s_i] - \frac{1}{\lambda} \frac{\nabla_{\theta} \pi_{\theta}(s_i, a_i)}{\pi_{\theta_k}(s_i, a_i)} A_i \right) 1 \left(D_{\text{KL}}(\pi_{\theta} || \pi_{\theta_k})[s_i] \leq \epsilon \right)$$

minimize by gradient descent and consider λ to be a parameter!
still an actor-critic approach!
Not really a novel idea \implies Classification-based PI
Classification-based Policy Iteration (RCPI)

- replaces the policy evaluation step with computing rollout estimates of q^π

 \[
 \mathcal{D} = \{x_i\}_{i=1}^N \mapsto \hat{q}^\pi
 \]

- casts the policy improvement step as a classification problem
 - find a policy in a given hypothesis space that best predicts the greedy action at every (observed) state

 \[
 \min_{\pi \in \Pi} \frac{1}{N} \sum_{i=1}^N \left(\max_a \hat{q}^{\pi k}(s_i, a) - \hat{q}^{\pi k}(s_i, \pi(s_i)) \right)
 \]

Estimate the return of a state-action pair as

\[R_{j}^{\pi_{k}}(s_i, a) = R_{j}^{\pi_{k},H}(s_i, a) + \gamma^{H} \hat{v}_{i}^{\pi_{k}}(s_{i}^{H}) \]

with

\[R_{j}^{\pi_{k},H}(s_i, a) = r(s_i, a) + \sum_{t=1}^{H-1} \gamma^{t} r(x_{ij}^{t}, \pi_{k}(x_{ij}^{t})) \]

Then

\[\hat{q}^{\pi_{k}}(s_i, a) = \frac{1}{m} \sum_{j=1}^{m} R_{j}^{\pi_{k}}(s_i, a) \]
Discussion

Key components:

1. Stochastic policies
2. Regularized or constrained optimization

What are the motivations

- Exploration
- Controlling the deviation
- Differentiability of Bellman operator

So far regularization was coming from lower bound to the performance. Can we analyse it independently?
Stochastic vs. Deterministic Policies

\[J_D(\pi) = \mathbb{E}_{s \sim d^\pi} [r(s, \pi(s))] \]

Deterministic Policy Gradient

\[\nabla_\theta J_D(\theta) = \sum_s d^\pi(s) \nabla_\theta \pi_\theta(s) \nabla_a q^\pi(s, a)|_{a=\pi_\theta(s)} \]

\[= \mathbb{E}_{s \sim d^\pi} [\nabla_\theta \pi_\theta(s) \nabla_a q^\pi(s, a)|_{a=\pi_\theta(s)}] \]

Issues:

- We need to be able to differentiate the model
- Explicitly force exploration at the level of actions
Stochastic vs. Deterministic Policies

Plug it into an actor-critic framework

⇒ Use TD(0) to update a parametric representation of q^π

$$\delta_t = R_t + \gamma Q_w(s_{t+1}, a_{t+1}) - Q_w(s_t, a_t)$$

$w_{t+1} = w_t + \alpha_w \delta_t \nabla_w Q_w(s_t, a_t)$

$\theta_{t+1} = \theta_t + \alpha_\theta \nabla_a Q_w(s_t, a_t) \nabla_\theta \mu_\theta(s)|_{a=\mu_\theta(s)}$

; TD error in SARSA

; Deterministic policy gradient theorem
Softmax Operator

\[
v^*(s) = \max_a \left\{ r(s, a) + \gamma \sum_y p(y|s, a)v^*(y) \right\}
\]

replace \(\max \) with “softmax” operator

\[
v^*(s) = \frac{1}{\eta} \log \left(\sum_a \exp \left[\eta \left(r(s, a) + \gamma \sum_y p(y|s, a)v^*(y) \right) \right] \right)
\]

The two approaches are connected by Lagrangian duality when

$$\Omega(\pi(s, \cdot)) = \sum_a \pi(s, a) \log \pi(s, a) \quad \text{negative entropy}$$
Entropy Regularization

\[
\max_{\pi} \left\{ J(\pi) = \mathbb{E} \left[\sum_{t=1}^{+\infty} \gamma^{t-1} r_t + \alpha \Omega(\pi(s_t, \cdot)) \right] \right\}
\]

The two approaches are connected by Lagrangian duality when

\[
\Omega(\pi(s, \cdot)) = \sum_a \pi(s, a) \log \pi(s, a)
\]

Results: [Neu et al., 2017]

- Existence and uniqueness
- Well-defined contractive DP operator
- Policy Gradient Theorem
Entropic Regularization

Optimal policy:

$$\pi^*(s, a) \propto \exp \left[\eta (r(s, a) + \gamma \mathbb{E}'_s[v^*(s')]) \right]$$

Note:

$$q^\pi(s, a) = r(s, a) + \gamma \sum_y p(y|s, a)v^\pi(y)$$

$$v^\pi(s) = \mathbb{E}_{a \sim \pi}[q^\pi(s, a)] - \Omega(\pi(s, \cdot))$$
Soft-Actor Critic

1. Train the value function v

$$
\arg \min_{\psi} \mathbb{E}_{s_t \sim H} \left[\frac{1}{2} \left(v_\psi(s_t) + \mathbb{E}_{a_t \sim \pi} [q_\theta(s_t, a_t) - \log \pi_\phi(s_t, a_t)] \right)^2 \right]
$$

2. Train the action-value function q^π

$$
\arg \min_{\theta} \mathbb{E}_{(s,a) \in H} \left[\frac{1}{2} \left(q_\theta(s_t, a_t) - (r(s_t, a_t) + \gamma \mathbb{E}[v_\psi(s')] \right)^2 \right]
$$

! fix the target network (e.g., DQN) → increase stability / break dependences

3. Fit the new policy

$$
\arg \min_{\phi} \mathbb{E}_{s \in H} \left[D_{KL}(\pi_\psi \| \exp[\eta q_\psi] / Z) [s] \right]
$$
Suppose the MDP is deterministic (otherwise take a conditional expectation w.r.t. to history)

For any v^*, π^* optimizing the regularized objective

$$v^*(s) - \gamma v^*(s') = r(s, a) - \eta \log \pi^*(s, a)$$

$$v^*(s_1) - \gamma^{t-1} v^*(s_t) = \sum_{t=1}^{t-1} \gamma^{i-1} (r(s_i, a_i) - \eta \log \pi^*(s_i, a_i))$$

if (π, v) satisfies the path consistency for every (s, a), then $\pi = \pi^*$ and $v = v^*$
Path-Consistency Learning

- Maintain two sets of parameters \((\phi, \theta)\): \(\theta \mapsto \pi_\theta, \phi \mapsto v_\phi\)
- Minimize the consistency error

\[
\min_{\phi, \theta} O_{PCL}(\phi, \theta, H) = \sum_{s_{i:i+d} \in E_H} \frac{1}{2} C(s_{i:i+d}, \phi, \theta)^2
\]

where \(E_H\) is the set of (sub)trajectories and

\[
C(s_{i:i+d}, \phi, \theta) = -v_\phi(s_{i}) + \gamma^d v_\phi(s_{i+d}) + \sum_{j=0}^{d-1} \gamma^j (r(s_{i+j}, a_{i+j}) - \eta \log \pi_\theta(s_{a+j}, a_{i+j}))
\]
Path-Consistency Learning

- Maintain two sets of parameters (ϕ, θ): $\theta \mapsto \pi_\theta$, $\phi \mapsto v_\phi$
- Minimize the consistency error

$$\min_{\phi, \theta} O_{PCL}(\phi, \theta, H) = \sum_{s_{i:i+d} \in E_H} \frac{1}{2} C(s_{i:i+d}, \phi, \theta)^2$$

where E_H is the set of (sub)trajectories and

$$C(s_{i:i+d}, \phi, \theta) = -v_\phi(s_i) + \gamma^d v_\phi(s_{i+d}) + \sum_{j=0}^{d-1} \gamma^j (r(s_{i+j}, a_{i+j}) - \eta \log \pi_\theta(s_{a+j}, a_{i+j}))$$

In practice:
- Use replay buffer
- Update incrementally \Rightarrow semi-batch
Path-Consistency Learning

- Maintain two sets of parameters \((\phi, \theta)\): \(\theta \mapsto \pi_\theta, \phi \mapsto v_\phi\)
- Minimize the consistency error

\[
\min_{\phi, \theta} O_{PCL}(\phi, \theta, H) = \sum_{s_{i:i+d} \in E_H} \frac{1}{2} C(s_{i:i+d}, \phi, \theta)^2
\]

where \(E_H\) is the set of (sub)trajectories and

\[
C(s_{i:i+d}, \phi, \theta) = -v_\phi(s_i) + \gamma^d v_\phi(s_{i+d}) + \sum_{j=0}^{d-1} \gamma^j (r(s_{i+j}, a_{i+j}) - \eta \log \pi_\theta(s_{a+j}, a_{i+j}))
\]

In practice:
- Use replay buffer
- Update incrementally \(\Rightarrow\) semi-batch

Can be extended to different regularizers (e.g., Shannon entropy, Tsallis entropy [Chow et al., 2018])
Regularized Markov Decision Processes
[Geist et al., 2019]

Bellman operator

\[L^\pi v(s) = \sum_a \pi(s, a) \left(r(s, a) + \gamma \sum_y p(y|s, a)v^\pi(y) \right) = \sum_a \pi(s, a)q^\pi(s, a) \]

Optimal Bellman operator

\[L^* v(s) = \max_a \left\{ r(s, a) + \gamma \sum_y p(y|s, a)v^*(y) \right\} \]

Greedy policy

\[L^* v = L_{\pi'} v \iff \pi' \in \arg\max_{\pi} L^\pi v \]
Regularized Markov Decision Processes

Regularizer

\[\Omega : \mathcal{P}(\mathcal{A}) \to \mathcal{S} \quad \text{strongly convex function} \]

Legendre-Fenchel transform (or convex conjugate)

\[\Omega^* : \mathbb{R}^A \to \mathbb{R} \]

\[\forall q \in \mathbb{R}^A, \quad \Omega^*(q) = \max_{z \in \mathcal{P}(\mathcal{A})} \left\{ \sum_s z(a)q(a) - \Omega(z) \right\} \]
Regularized Markov Decision Processes

Regularizer

\[\Omega : \mathcal{P}(A) \rightarrow S \]

strongly convex function

Legendre-Fenchel transform (or convex conjugate)

\[\Omega^* : \mathbb{R}^A \rightarrow \mathbb{R} \]

\[
\forall q \in \mathbb{R}^A, \quad \Omega^*(q) = \max_{z \in \mathcal{P}(A)} \left\{ \sum_s z(a)q(a) - \Omega(z) \right\}
\]

Property of strongly convex functions: *unique maximizing argument*

\[\nabla \Omega^* \text{ is Lipschitz and} \quad \nabla \Omega^*(q) = \arg \max_{z \in \mathcal{P}(A)} \left\{ \sum_s z(a)q(a) - \Omega(z) \right\} \]
Examples:

<table>
<thead>
<tr>
<th></th>
<th>$\Omega(\pi(s, \cdot))$</th>
<th>$\Omega^*(q(s, \cdot))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative entropy</td>
<td>$\sum_a \pi_s(a) \log \pi(s, a)$</td>
<td>$\log \sum_a \exp q(s, a)$</td>
</tr>
<tr>
<td></td>
<td>$\nabla \Omega^*(q(s, \cdot)) = \frac{\exp q(s, a)}{\sum_b \exp q(s, b)}$</td>
<td>i.e., softmax</td>
</tr>
<tr>
<td>KL-divergence</td>
<td>$\sum_a \pi(s, a) \log \pi(s, a) + \log(A)$</td>
<td>$\ln \sum_a \frac{1}{A} \exp[[q(s, a)]$</td>
</tr>
<tr>
<td>between π and uniform</td>
<td>$\nabla \Omega^* \text{ is Mellowmax [Asadi and Littman, 2017]}$</td>
<td></td>
</tr>
<tr>
<td>Tsallis entropy</td>
<td>$\frac{1}{2} (|\pi(s, \cdot)|_2^2 - 1)$</td>
<td>$\nabla \Omega^* \text{ is the sparsemax [Chow et al., 2018]}$</td>
</tr>
<tr>
<td>($q = 2, k = 1/2$)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Regularized Markov Decision Processes

Regularized Bellman operators w.r.t. Ω

$$L^\pi_\Omega v(s) = L^\pi v(s) - \Omega(\pi(s, \cdot)) = \sum_a \pi(s, a)q^\pi(s, a) - \Omega(\pi(s, \cdot))$$

Regularized Optimal Bellman operators w.r.t. Ω

$$L^*_\Omega v(s) = \max_\pi L^\pi_\Omega v[s] = \Omega^*(q(s, \cdot))$$

Greedy policy

$$\pi' = G_\Omega(v) = \nabla \Omega^*(q) \iff L^\pi_\Omega v = L^*_\Omega v$$

We have the usual properties for L^π_Ω: **affine, monotonicity, distributivity, contraction**
Regularized Markov Decision Processes

Regularized value functions: \(v_{\pi}^\Omega = L_{\pi}^\Omega v_{\pi}^\Omega \)

\[
q_{\pi}(s, a) = r(s, a) + \gamma \sum_y p(y|s, a)v_{\pi}(y)
\]

\[
v_{\pi}(s) = \mathbb{E}_{a \sim \pi}[q_{\pi}(s, a)] - \Omega(\pi(s, \cdot))
\]

Regularized optimal value functions: \(v_{\pi}^\star = L_{\pi}^\star v_{\pi}^\star \)

\[
q_{\pi}^\star(s, a) = r(s, a) + \gamma \sum_y p(y|s, a)v_{\pi}^\star(y)
\]

\[
v_{\pi}^\star(s) = \Omega^\star(q_{\pi}^\star(s, \cdot))
\]

Optimality

\(\pi_{\Omega}^\star = \mathcal{G}_\Omega(v_{\pi}^\star) \) is optimal

\(\forall \pi, \quad v_{\Omega}^{\pi^\star} = v_{\pi}^\star \geq v_{\Omega}^\pi \)
This explains many recent algorithms
They can be seen as a particular instance of Modified Policy Iteration

\[\pi_{k+1} = \mathcal{G}_\Omega(v_k) \]
\[v_{k+1} = (L^{\pi_{k+1}}_\Omega)^m v_k \]

- Up to modifications for make them practical
 - Soft Q-learning with negative entropy [Fox et al., 2016, Schulman et al., 2017a] or Tsallis entropy [Lee et al., 2018]
 - SAC with entropic regularizer [Haarnoja et al., 2018]
 - Algorithms based on path consistency [Nachum et al., 2017, Chow et al., 2018]
Regularized Markov Decision Processes

Issues:
- Regularization as defined above is changing the objective
- We obtain a different optimal policy
- Should be an algorithm trick and not a change in the objective
 - i.e., estimate the original optimal policy by solving
 a series of regularized problems
Issues:

- Regularization as defined above is changing the objective
- We obtain a different optimal policy
- Should be an algorithm trick and not a change in the objective
 - i.e., estimate the original optimal policy by solving
 a series of regularized problems

Solution:

- Consider a time varying regularized
- Penalize the difference between policy π and the one at previous iteration (already seen)
Regularized Markov Decision Processes

Bregman divergence

\[
\Omega_{\pi_s'}(\pi_s) = D_{\Omega}(\pi_s \parallel \pi_s') = \Omega(\pi_s) - \Omega(\pi_s') - \nabla \Omega(\pi_s')^T(\pi_s - \pi_s')
\]

Example:

negative entropy \(\Rightarrow\) \(\Omega_{\pi_s'}(\pi_s) = D_{KL}(\pi \parallel \pi')[s]\)
Bregman divergence

\[\Omega_{\pi'_s}(\pi_s) = D_\Omega(\pi_s \| \pi'_s) = \Omega(\pi_s) - \Omega(\pi'_s) - \nabla \Omega(\pi'_s) \top (\pi_s - \pi'_s) \]

Example:

negative entropy \(\Rightarrow \) \(\Omega_{\pi'_s}(\pi_s) = D_{KL}(\pi \| \pi')[s] \)

Policy Iteration improvement

\[\pi_{k+1} = \mathcal{G}_{\Omega_{\pi_k}}(v_k) \]
\[= \arg \max_{\pi} \sum_a \pi(s, a)q_k(s, a) - D_\Omega(\pi \| \pi_k) \]
Regularized Markov Decision Processes

Bregman divergence

\[\Omega_{\pi'}(\pi_s) = D_\Omega(\pi_s \parallel \pi'_s) = \Omega(\pi_s) - \Omega(\pi'_s) - \nabla \Omega(\pi'_s)^T(\pi_s - \pi'_s) \]

Example:

negative entropy \(\implies\) \[\Omega_{\pi'}(\pi_s) = D_{KL}(\pi \parallel \pi')[s] \]

Policy Iteration improvement

\[\pi_{k+1} = G_{\Omega_{\pi_k}}(v_k) \]
\[= \arg \max_{\pi} \sum_a \pi(s, a)q_k(s, a) - D_\Omega(\pi \parallel \pi_k) \]

\[\text{similar to Mirror Descent in proximal form with } -q_k \text{ as gradient!} \]

\[\implies \text{estimates the original optimal policy} \]
Regularized Markov Decision Processes

- Common framework
- Algorithms are either Mirror Descent or Dual Averaging [Neu et al., 2017]

TRPO can be seen as a mirror descent approach \(\implies \) guarantees of convergence
Similar interpretation (as dual averaging algorithm) for DPP [Azar et al., 2012] and MPO [Abdolmaleki et al., 2018].
Regularized Policy Gradient

\[
\nabla J_\Omega(\pi) = \sum_s d^\pi(s) \sum_a \pi(s, a) \left(q_\Omega^\pi(s, a) - \frac{\partial \Omega(\pi(s, \cdot))}{\partial \pi(s, a)} \right) \nabla \log \pi(s, a)
\]

Possible to replace with Bregman divergence \(\Rightarrow\) convergence to original policy
Resources

Reinforcement Learning

Books

Courses

Francis Bach. Stochastic optimization: Beyond stochastic gradients and convexity part i. 2016.

