Introduction

What do we do?
- Exploration in continuous MDPs
- With theoretical guarantees

How?
- Using exploration bonus and discretization

Online Learning in MDPs
- Markov Decision Process $M = \{S, A, r, p\}$
- Optimality criterion: average reward

For any policy π starting from $s \in S$, the expected time $\lim_{t \to \infty} \mathbb{E}_{T} [T(s, a)]$ is unknown.

Diameter: $D = \min_{s, s' \in S} \mathbb{E}_{T} [T(s, a)]$

Prior Knowledge on the Bias Span
- Provides a sense of what is realizable in the true MDP
- Averts over-optimism
- Necessary to define the exploration bonus

UCRL2-like Exploration

For $k = 1, 2, \ldots$

1. Estimation of model and uncertainty
 \[M_k = \{ M = (S, A, \tilde{r}, \tilde{p}) : \tilde{p}(s, a, \sigma) \in B_{\alpha}(s, a), \tilde{r}(s, a, \sigma) \in B_{H}(s, a) \} \]

2. Planning for optimistic policy
 \[(M_k, \pi_k) = \arg \max_{M \in M_k} \max_{\pi} \mathbb{E}_{g^*}(M) \]

3. Execution of policy π_k
 - execute action $a_t \sim \pi_k$
 - observe reward r_t and next state s_{t+1}

SCAL+: tabular MDP

- Exploration bonus: Used in deep RL [Bellemare et al. 2016, Tang et al. 2017] and/or when the intrinsic horizon is known [Auer et al. 2017, Jin et al. 2018]

For $k = 1, 2, \ldots$

1. Estimation of empirical model
 \[M_k = (S, A, \tilde{p}, \tilde{r}) \]

2. Planning for optimistic policy
 \[\pi_k = \arg \max_{g^* \in \Gamma} \mathbb{E}_{g^*}(M_k) \]

Numerical Results

- **GARNET:** tabular MDP
- **SHIP STEERING:** tabular MDP
- **RIVER SWIM:** continuous MDP

SCAL+: regret

For any MDP such $\mathbb{E}_{g}(h^*) \leq c$, w.p. $1 - \delta$

\[R(\text{SCAL}^+, T) \approx \tilde{O}(c\sqrt{\Delta T}) \]

- Continuous MDPs –
- First implementable algorithm with guarantees in cont. MDPs (lots details are missing here, see paper)
- More stable than model-free version