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Reinforcement Learning
2

[Sutton and Barto, 1998]

learning what to do-how to map
situations to actions-so as to maximize a

numerical reward signal

A framework for learning by interaction

Matteo Pirotta



[Bertsekas, 1995, Puterman, 1994]

[Sutton and Barto, 1998]

What is the difference with optimal control?

Reinforcement Learning is optimal control in
unknown MDPs

o exploration-exploitation
trade-off
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Abbeel and Schulman. Deep Reinforcement Learning Through Policy Optimization.
Tutorial at NIPS 2016
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GO game
[Mnih et al., 2015]

4.9 million games of self-play

ATARI Games
[Mnih et al., 2013]

train data = 10 million frames
1 epoch = 500000 minibatch updates (≈30

minutes of games)
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GO game
[Mnih et al., 2015]

4.9 million games of self-play

ATARI Games
[Mnih et al., 2013]

train data = 10 million frames
1 epoch = 500000 minibatch updates (≈30

minutes of games)

V Many RL algorithms are inefficient in
the “collection” and “use” of samples

Matteo Pirotta



Limitations
6

_
Model-free

No explicit representation of the system

ü
Poor Exploration

Non effective action selection

ε-greedy

a =

arg max
a

Qπ(s, a) w.p. 1− ε

random action w.p. ε

Softmax

P(a|s) =
eQ

π(s,a)/τ∑
a′ e

Qπ(s,a′)/τ
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Limitations (cont’d)
7

Dithering effect: stochastic
exploration

Policy shift: policy is changed at
every step, no time-consistency (e.g.,
Q-learning)

Selected policy

stochastic

deviations
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Limitations (cont’d)
7

Dithering effect: stochastic
exploration

Policy shift: policy is changed at
every step, no time-consistency (e.g.,
Q-learning)

Selected policy

stochastic

deviations

Ý We need directed and

consistent exploration!

SOLUTION:
Optimism in face of uncer-
tainty principle

Matteo Pirotta



OFU Example
8

Thanks Ronan Fruit for the example

Mountain

Agent

Apple

Matteo Pirotta



OFU Example
8

Thanks Ronan Fruit for the example

?
The agent does not know what
is at the top of the mountain

Matteo Pirotta



OFU Example
8

Thanks Ronan Fruit for the example

Maybe there is nothing interesting...
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OFU Example
8

Thanks Ronan Fruit for the example

... or maybe there is!

�
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OFU Example
8

Thanks Ronan Fruit for the example

Optimism pushes for exploration

by assuming the best world!
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OFU Example
8

Thanks Ronan Fruit for the example

The higher the mountain the

more challenging the exploration!
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OFU Example
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Thanks Ronan Fruit for the example

The higher the mountain the

more challenging the exploration!
- Intrinsic difficulty of
exploration-exploitation in RL!
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OFU Example
8

Thanks Ronan Fruit for the example

The higher the mountain the

more challenging the exploration!
- Intrinsic difficulty of
exploration-exploitation in RL!

- Unavoidable except if we can
exploit some prior knowledge !

Matteo Pirotta



OFU Example
8

Thanks Ronan Fruit for the example

The raspberries do not grow
above a certain altitude!

Matteo Pirotta



OFU Example
8

Thanks Ronan Fruit for the example

The raspberries do not grow
above a certain altitude!

Questions of this talk:

I Can we exploit prior
knowledge for exp-exp?

I Is it
necessary/mandatory?

Matteo Pirotta



Setting
9

We consider a finite MDP M = {S,A, p, r}

S is the finite state space (S = |S| < +∞)

A is the finite action space (A = |A| < +∞)

p(s′|s, a) is the transition kernel

r(s, a) ∈ [0, 1] is the reward
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Setting
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We consider a finite MDP M = {S,A, p, r}

S is the finite state space (S = |S| < +∞)

A is the finite action space (A = |A| < +∞)

p(s′|s, a) is the transition kernel

r(s, a) ∈ [0, 1] is the reward

Unknown!
On-line learning problem

?
Goal: Learn the optimal policy π∗ : S → P(A)

Matteo Pirotta



Average Reward (the gain)
10

Average expected reward or gain

gπM (s) := lim
T→+∞

E

[
1

T

T∑
t=1

r(st, at)

]

Optimal gain g∗ and optimal policy π∗

π∗ := arg max
π

gπM (s)

g∗ := gπ
∗

M (s) = max
π

gπM (s)
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Average Reward (the bias)
11

hπM (s) := lim
T→+∞

E

[
T∑
t=1

(
r(st, π(st))− gπM (st)

)]

† aperiodic Markov chains
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Average Reward (the bias)
11

hπM (s) := lim
T→+∞

E

[
T∑
t=1

(
r(st, π(st))− gπM (st)

)]

“stationary” reward“transient” reward
difference between im-
mediate reward and
asymptotic reward

† aperiodic Markov chains

Optimality Equation

h∗ + g∗e = Lh∗

= max
a
{r(s, a) + p(·|s, a)Th∗}

Matteo Pirotta



Optimal gain and bias span
12

Remember the “fruity” example!

Gain g∗ ⇐⇒ preferred fruit (raspberry � apple)

Bias span sp {h∗} ⇐⇒ altitude of the mountain

Thanks Ronan Fruit for the example
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Optimal gain and bias span
12

Remember the “fruity” example!

Gain g∗ ⇐⇒ preferred fruit (raspberry � apple)

Bias span sp {h∗} ⇐⇒ altitude of the mountain

π∗
s2

s1

h∗(s2)− h∗(s1)

Thanks Ronan Fruit for the example

Matteo Pirotta



Optimal gain and bias span
12

Remember the “fruity” example!

Gain g∗ ⇐⇒ preferred fruit (raspberry � apple)

Bias span sp {h∗} ⇐⇒ altitude of the mountain

π∗
s2

s1

h∗(s2)− h∗(s1)sp {h∗} := max
s∈S

h∗(s)−min
s∈S

h∗(s)

sp {h∗} characterizes the complexity of the problem!

Thanks Ronan Fruit for the example
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Optimal gain and bias span
12

Remember the “fruity” example!

Gain g∗ ⇐⇒ preferred fruit (raspberry � apple)

Bias span sp {h∗} ⇐⇒ altitude of the mountain

Prior knowledge c ≥ sp {h∗} ⇐⇒ maximum altitude where raspberries can grow

sp {h∗} := max
s∈S

h∗(s)−min
s∈S

h∗(s)

sp {h∗} characterizes the complexity of the problem!

c

Thanks Ronan Fruit for the example

Matteo Pirotta



Optimism in Face of Uncertainty (OFU)

When you are uncertain, consider the best
possible world

[Brafman and Tennenholtz, 2003, Strehl and

Littman, 2008, Ortner, 2008, Jaksch et al.,

2010, Bartlett and Tewari, 2009, Ortner and

Ryabko, 2012, Osband et al., 2013,

Abbasi-Yadkori and Szepesvári, 2015, Maillard

et al., 2013, Gopalan and Mannor, 2015,

Lakshmanan et al., 2015, Ouyang et al., 2017,

Azar et al., 2017, Jin et al., 2018, Kakade

et al., 2018, Agrawal and Jia, 2017], [Fruit

et al., 2017, 2018a,b] and many more

Formally: gk & g
∗

Matteo Pirotta



OFU in RL
14

t = 0
for episode k = 1, 2, . . . do

Optimistic Planning → πk

Hk+1 = Hk
while not enough knowledge do

Take action at ∼ πk(·|st)
Observe reward rt and next

state st+1

Update Hk+1 =
Hk+1 ∪ (st, at, rt, st+1)

end

end Execute policy

Matteo Pirotta
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for episode k = 1, 2, . . . do
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while not enough knowledge do

Take action at ∼ πk(·|st)
Observe reward rt and next

state st+1

Update Hk+1 =
Hk+1 ∪ (st, at, rt, st+1)

end

end

Plausible MDPs

1 Construct a set of plausible MDPs
(high-confidence)

2 Select the MDP with highest gain

e.g., UCRL [Jaksch et al., 2010], REGAL [Bartlett and

Tewari, 2009], SCAL [Fruit, P., Lazaric Ortner; 2018b],
TUCRL [Fruit, P., Lazaric, 2018a]

Execute policy

◦ provides consistency
◦ avoids policy shift
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OFU in RL
14

t = 0
for episode k = 1, 2, . . . do

Optimistic Planning → πk

Hk+1 = Hk
while not enough knowledge do

Take action at ∼ πk(·|st)
Observe reward rt and next

state st+1

Update Hk+1 =
Hk+1 ∪ (st, at, rt, st+1)

end

end

Plausible MDPs

1 Construct a set of plausible MDPs
(high-confidence)

2 Select the MDP with highest gain

e.g., UCRL [Jaksch et al., 2010], REGAL [Bartlett and

Tewari, 2009], SCAL [Fruit, P., Lazaric Ortner; 2018b],
TUCRL [Fruit, P., Lazaric, 2018a]

Exploration Bonus

Compute the optimal policy of the empirical
MDP plus bonus

The bonus is an additive term to the reward

e.g., MBIE-EB [Strehl and Littman, 2008], UCBV-
1 [Azar et al., 2017], vUCQ [Kakade et al., 2018],
SCAL+

[Qian, Fruit, P., Lazaric; 2018]

Execute policy

◦ provides consistency
◦ avoids policy shift

Matteo Pirotta



Plausible MDPs: Confidence intervals
15

∥∥ p̃k(·|s, a) − pk(·|s, a)
∥∥

1
≤ βp,k(s, a) ≈

√√√√S
ln(1/δ)

Nk(s, a)

Admissible transitions

Estimated trans. (MLE): pk(s′|s, a) = Nk(s, a, s′)/Nk(s, a)

number of visits in (s, a)

Based on Hoeffding [Klenke and Loève, 2013] or empirical Bernstein concentration in-
equalities [Audibert et al., 2007]
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1
≤ βp,k(s, a) ≈

√√√√S
ln(1/δ)

Nk(s, a)

Admissible transitions

Estimated trans. (MLE): pk(s′|s, a) = Nk(s, a, s′)/Nk(s, a)

number of visits in (s, a)

∣∣ r̃k(s, a) − rk(s, a)
∣∣ ≤ βr,k(s, a) ≈ rmax

√
ln(1/δ)

Nk(s, a)

Based on Hoeffding [Klenke and Loève, 2013] or empirical Bernstein concentration in-
equalities [Audibert et al., 2007]
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Plausible MDPs: Optimistic Planning
16

UCRL [Jaksch et al., 2010]

( Mk , πk ) ∈ arg max
M∈Mt, π:S→P(A)

gπM

MDP space

M1

M1

M∗

MDP space

M1

M1

M∗

g∗M

M̃1

Matteo Pirotta



Plausible MDPs: Optimistic Planning
16

UCRL [Jaksch et al., 2010]

( Mk , πk ) ∈ arg max
M∈Mt, π:S→P(A)

gπM

MDP space

M1

M1

M∗

MDP space

M1

M1

M∗

g∗M

M̃1

Matteo Pirotta



Plausible MDPs: Optimistic Planning
16

UCRL [Jaksch et al., 2010]

( Mk , πk ) ∈ arg max
M∈Mt, π:S→P(A)

gπM

MDP space

M1

M1

M∗

MDP space

M1

M1

M∗

g∗M

M̃1

Matteo Pirotta



Plausible MDPs: Optimistic Planning
16

UCRL [Jaksch et al., 2010]

( Mk , πk ) ∈ arg max
M∈Mt, π:S→P(A)

gπM

Mk ∈ arg max
M∈Mk

{g∗M}

MDP with highest gain

πk ∈ arg max
π:S→P(A)

{gπMk
}

Optimal policy of Mk

MDP space

M1

M1

M∗

MDP space

M1

M1
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Plausible MDPs: Optimistic Planning
16

UCRL [Jaksch et al., 2010]

( Mk , πk ) ∈ arg max
M∈Mt, π:S→P(A)

gπM

Mk ∈ arg max
M∈Mk

{g∗M}

MDP with highest gain

πk ∈ arg max
π:S→P(A)

{gπMk
}

Optimal policy of Mk

MDP spaceMDP space

M1

M1

M∗

g∗M

M̃1

M∗ M2

M2

M̃2
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Plausible MDPs: Optimistic Planning
17

SCAL [Fruit, P., Lazaric, Ortner; 2018b]

(Mk, πk) ∈ arg max

M ∈Mk , π∈ ΠC(M)

{gπM}

ΠC(M) :=
{
π : S → P(A) : sp {hπM} ≤ c

}

A regularized version was proposed by Bartlett and

Tewari [2009] but no solution algorithm is known.

V this is a constrained optimization problem

Matteo Pirotta



Plausible MDPs: Optimistic Planning
17

SCAL [Fruit, P., Lazaric, Ortner; 2018b]

(Mk, πk) ∈ arg max

M ∈Mk , π∈ ΠC(M)

{gπM}

ΠC(M) :=
{
π : S → P(A) : sp {hπM} ≤ c

}

A regularized version was proposed by Bartlett and

Tewari [2009] but no solution algorithm is known.

V this is a constrained optimization problem

F NOT trivial optimization

Yet, it can be solved: SCOPT [Fruit,

P., Lazaric, Ortner; 2018b]

Lots of technical details: e.g., stochastic

policy, feasibility, convergence
Matteo Pirotta



Problems
18

1 Optimism may be a little bit loose

2 Need to plan on an extended MDP (i.e., on a set of MDPs)
• Extended Value Iteration (EVI) [Strehl and Littman, 2008, Jaksch et al., 2010] for

UCRL

vn+1 = L̃vn := max
a∈A

{
max

r∈βr,k(s,a)
r + max

p∈βp,k(s,a)
p(·|s, a)Tvn

}
(1)

• ScOpt for SCAL

3 Complicated to generalize outside finite MDPs
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Problems
18

1 Optimism may be a little bit loose

2 Need to plan on an extended MDP (i.e., on a set of MDPs)
• Extended Value Iteration (EVI) [Strehl and Littman, 2008, Jaksch et al., 2010] for

UCRL

vn+1 = L̃vn := max
a∈A

{
max

r∈βr,k(s,a)
r + max

p∈βp,k(s,a)
p(·|s, a)Tvn

}
(1)

• ScOpt for SCAL

3 Complicated to generalize outside finite MDPs

SOLUTION
exploration bonus

Matteo Pirotta



Exploration Bonus: the optimistic empirical MDP
19

Empirical MDP: M̂k = {S,A, pk , rk }

Consider MLE of transitions pk and rewards rk

Optimism is obtained by an exploration bonus

bk(s, a) ≈
(
c + rmax

)√ ln(tk/δ)

Nk(s, a)

SCAL+
[Qian, Fruit, P., Lazaric, 2018c] plans on a single MDP

πk ∈ arg max
π∈

gπ
M̂k
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Exploration Bonus: the optimistic empirical MDP
19

M̂k = {S,A, pk , rk + bk }

Consider MLE of transitions pk and rewards rk

Optimism is obtained by an exploration bonus

bk(s, a) ≈
(
c + rmax

)√ ln(tk/δ)

Nk(s, a)

SCAL+
[Qian, Fruit, P., Lazaric, 2018c] plans on a single MDP

πk ∈ arg max

π∈Πc(M̂k)

gπ
M̂k Still a Span-Constrained Optimization

Πc(M) := {π : S → P(A) : sp {hπM} ≤ c}

Matteo Pirotta



Exploration bonus
20

∣∣ r(s, a) − rk(s, a)
∣∣ . rmax

√
ln(tk/δ)

Nk(s, a)

∣∣ (p(·|s, a)− pk(·|s, a))T h∗
∣∣ . c

√
ln(tk/δ)

Nk(s, a)

Bellman Operator of M̂k

L̂h∗ = max
a∈A

{
rk(s, a) + pk(·|s, a)Th∗

}
(2)

= max
a∈A

{
rk(s, a) + rmax

√
ln(tk/δ)

Nk(s, a)︸ ︷︷ ︸
≥r(s,a)

+ pk(·|s, a)Th∗ + c

√
ln(tk/δ)

Nk(s, a)︸ ︷︷ ︸
≥p(·|s,a)Th∗

}

≥ Lh∗
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20
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√
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∣∣ . c

√
ln(tk/δ)

Nk(s, a)
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{
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(2)

= max
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{
rk(s, a) + rmax

√
ln(tk/δ)

Nk(s, a)︸ ︷︷ ︸
≥r(s,a)

+ pk(·|s, a)Th∗ + c

√
ln(tk/δ)

Nk(s, a)︸ ︷︷ ︸
≥p(·|s,a)Th∗

}

≥ Lh∗

[Puterman, 1994] [Fruit, P., Lazaric, Ortner; 2018b] =⇒ gk = g∗c (M̂k) & g
∗
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Performance of a learning agent
21

Regret ∆(A, T ) =

T∑
t=1

(
g∗ − rt(st, at)

)
Per step reward

T

g∗ (optimal policy)

learning curve

(cumulative) regret

*different definition for finite-horizon problems

Matteo Pirotta



Performance of a learning agent
21

Regret ∆(A, T ) =

T∑
t=1

(
g∗ − rt(st, at)

)
Per step reward

T

g∗ (optimal policy)

learning curve

(cumulative) regret

*different definition for finite-horizon problems

V Learning means sublinear regret
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Regret of SCAL+ 22

Theorem. For any MDP M such that sp {h∗} ≤ c , with probability at least 1− δ,
the regret of SCAL+ is bounded as

∆(SCAL+, T ) = O

S√AT ln

(
T

δ

)
· c
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T

δ
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Regret of SCAL+ 22

Theorem. For any MDP M such that sp {h∗} ≤ c , with probability at least 1− δ,
the regret of SCAL+ is bounded as

∆(SCAL+, T ) = O

S√AT ln

(
T

δ

)
· c


D in UCRL

min{c,D} in SCAL

D = max
s,s′∈S

{
min

π:S→P(A)

{
Eπ
[
T (s′)

∣∣s] }}

Mean arrival time in s′ starting in s
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Regret of SCAL+ 22

Theorem. For any MDP M such that sp {h∗} ≤ c , with probability at least 1− δ,
the regret of SCAL+ is bounded as

∆(SCAL+, T ) = O

S√AT ln

(
T

δ

)
· c


D in UCRL

min{c,D} in SCAL

sp {h∗} ≤ D [Bartlett and Tewari, 2009]

The gap can be arbitrarily big, e.g., D = +∞ but sp {h∗} < +∞
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Why Exploration Bonus?
23

Regret Minimization in continuous state MDPs: C-SCAL+

• MDP (reward and transitions) is Hölder continuous (parameters L and α)
• C-SCAL+ combines the idea of SCAL+ with state aggregation

aggregation

b(I, a) ≈ max{c, rmax}(1/
√
Nk(s, a) + LS−α)

• Regret bound: ∆(C-SCAL+, T ) = Õ
(

max{c, rmax}L
√
AT (α+2)/(2α+2)

)
For solutions based on plausible MDPs refer to [Ortner and Ryabko, 2012, Lakshmanan et al.,

2015]. Not implementable in the current form. Hint: mix with SCAL.
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Why Exploration Bonus?
24

Exploration-exploitation at scale: deep reinforcement learning
[Bellemare et al., 2016, Tang et al., 2017, Ostrovski et al., 2017, Martin et al., 2017]

• Simple additive term to the reward, can be incorporated in any algorithm

r̃(s, a) = r(s, a) +

√
β

Nk(φ(s, a))

• Use advanced discretization techniques φ(s, a), e.g., hashing
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Span-Constrained Planning
25

sup
π∈Πc(M)

{gπ}

Πc(M) := {π : S → P(A) : sp {hπM} ≤ c ∧ sp {gπM} = 0}

m Connection with the exploration-exploitation framework

SCAL: M := M̃k , an extended MDP with continuous actions Ãk

(Mk, πk) ∈ arg max
M∈Mk, π∈Πc(M)

gπM equivalent π̃k ∈ arg max
π:S→P(Ãk)∧sp{hπ}≤c

gπM̃k

i.e., where the Bellman operator L̃ is defined in Eq. 1

SCAL+: M := M̂k where L̂ is defined as in Eq. 2
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Span-Constrained Planning
25

sup
π∈Πc(M)

{gπ}

Πc(M) := {π : S → P(A) : sp {hπM} ≤ c ∧ sp {gπM} = 0}

NOT trivial optimization problem

but apparently simple solution: ScOpt [Fruit, P., Lazaric, Ortner, 2018b]

vn+1 = Lvn := max
a∈A

{
r(s, a) +

∑
s′∈S

p(s′|s, a)vn(s′)

}

vn+1
∀s
=

{
c if vn+1(s) ≥ min{vn+1}+ c

vn+1(s) otherwise
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Span-Constrained Planning
25

sup
π∈Πc(M)

{gπ}

Πc(M) := {π : S → P(A) : sp {hπM} ≤ c ∧ sp {gπM} = 0}

NOT trivial optimization problem

but apparently simple solution: ScOpt [Fruit, P., Lazaric, Ortner, 2018b]

vn+1 = Lvn := max
a∈A

{
r(s, a) +

∑
s′∈S

p(s′|s, a)vn(s′)

}

vn+1
∀s
=

{
c if vn+1(s) ≥ min{vn+1}+ c

vn+1(s) otherwise

i.e., “truncated” above

∀n, sp {vn} ≤ c
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Span-Constrained Planning
26

o Issues
� The associated one-step policy can be stochastic . . .
. . . and may not exist

� Truncated value iteration (i.e.,ScOpt) may not converge

Theorem. If

1 L is a (γ < 1)-span contraction

2 All policies are unichain

3 ∀v : sp {v} ≤ c, min
a

{
r(s, a) + p(·|s, a)Tv

}
≤ min

s′
{Lv(s′)}+ c

then

optimality equation: Tch
+ = h+ + g+e and g+ = g∗c

convergence: lim
n→∞

Tn+1
c v0 − Tnc v0 = g+e
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How to force these properties in exp-exp
The estimated MDP

27

Consider a biased (but asymptotically consistent) estimator of the transition
probabilities

p̂k(s
′|s, a) =

Nk(s, a)pk(s
′|s, a)

Nk(s, a) + 1
+

1(s′ = s)

Nk(s, a) + 1

=⇒ SCOPT converges

Problem: there might not be any policy associated to g∗c !

Augment the reward: duplicate all the actions

∀s ∈ S, a ∈ At, define b such that p(·|s, b) = p(·|s, a) and r(s, b) = 0
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How to force these properties in exp-exp
The estimated MDP

27

Consider a biased (but asymptotically consistent) estimator of the transition
probabilities

p̂k(s
′|s, a) =

Nk(s, a)pk(s
′|s, a)

Nk(s, a) + 1
+

1(s′ = s)

Nk(s, a) + 1

=⇒ SCOPT converges

Problem: there might not be any policy associated to g∗c !

Augment the reward: duplicate all the actions

∀s ∈ S, a ∈ At, define b such that p(·|s, b) = p(·|s, a) and r(s, b) = 0

� When M̂k is perturbed and aug-
mented, SCOPT converges to

g+ & g∗
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The role of prior knowledge
28

provides a sense of what it is realizable in the true MDP

avoids over-optimism

c

OK OK NO

This information is mandatory to define the exploration bonus∣∣ (p(·|s, a)− pk(·|s, a))T h∗
∣∣ ≤ ‖p(·|s, a)− pk(·|s, a)‖1‖h∗‖∞

Intrinsic in other settings (infinite-horizon undiscounted, finite-horizon)
Matteo Pirotta



The role of prior knowledge
Intrinsic Horizon

29

Setting
MDP

parameter
Horizon Knowledge Exploration Bonus

infinite-
horizon

discounted
γ

1

1− γ |Q(s, a)| ≤ rmax

1− γ Θ̃

(
rmax

1− γ

√
1

Nk(s, a)

)
MBIE-EB [Strehl and Littman, 2008]

finite-horizon H H |Q(s, a)| ≤ rmaxH Θ̃

(
rmaxH

√
1

Nk(s, a)

)
UCBVI-1 [Azar et al., 2017]

others [Azar et al., 2017, Kakade et al., 2018, Jin et al., 2018]

average
reward

? +∞ ? ?
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The role of prior knowledge
Intrinsic Horizon

29

Setting
MDP

parameter
Horizon Knowledge Exploration Bonus

infinite-
horizon

discounted
γ

1

1− γ |Q(s, a)| ≤ rmax

1− γ Θ̃

(
rmax

1− γ

√
1

Nk(s, a)

)
MBIE-EB [Strehl and Littman, 2008]

finite-horizon H H |Q(s, a)| ≤ rmaxH Θ̃

(
rmaxH

√
1

Nk(s, a)

)
UCBVI-1 [Azar et al., 2017]

others [Azar et al., 2017, Kakade et al., 2018, Jin et al., 2018]

average
reward

? +∞ ? ?
sp {h∗} ≤ c

assumption

Θ̃

(
c

√
1

Nk(s, a)

)
SCAL+ [Qian, Fruit, P., Lazaric, 2018]

Matteo Pirotta



The role of prior knowledge
in Average Reward settings

30

Almost all the algorithms requires prior knowledge

MDP Algorithm Properties/Assumptions

Ergodic KL-UCRL [Talebi and Maillard, 2018]

Communicating UCRL [Jaksch et al., 2010] D < +∞

Weakly Comm. ë REGAL [Bartlett and Tewari, 2009] D = +∞ but
SCAL [Fruit, P., Lazaric, Ortner, 2018b] we need sp {h∗} ≤ c
SCAL+

[Qian, Fruit, P., Lazaric, 2018a]

Non Comm. TUCRL [Fruit, P., Lazaric, 2018a]

No assumptions but
impossible to have
logarithmic regret

[Puterman, 1994] Sec. 8.3

+
co

m
p

le
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ty
/

g
en

er
a

li
ty
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Outlook
31

span-constrained exp-exp ⇐⇒ regularization

Open Questions?

in practice
• Constrained planning
• Model-based planning

in theory
• Closing the gap between lower and upper bound
• Exploration bonus with different algorithm structure
• Model-free approaches
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