Preprints
-
Andrea Tirinzoni, Matteo Pirotta, Alessandro Lazaric:
A Fully Problem-Dependent Regret Lower Bound for Finite-Horizon MDPs.
arXiv:2106.13013, 2021. [arXiv]
-
Yonathan Efroni, Shie Mannor and Matteo Pirotta:
Exploration-Exploitation in Constrained MDPs.
arXiv:2003.02189, 2020. [arXiv]
Conference Papers
-
Yunchang Yang, Tianhao Wu, Han Zhong, Evrard Garcelon, Matteo Pirotta, Alessandro Lazaric, Liwei Wang, Simon S. Du:
A Reduction-Based Framework for Conservative Bandits and Reinforcement Learning.
ICLR 2022, Virtual. [paper], [arXiv]
-
Jean Tarbouriech, Omar Darwiche Domingues, Pierre Menard, Matteo Pirotta, Michal Valko, Alessandro Lazaric:
Adaptive Multi-Goal Exploration.
AISTATS 2021, Virtual. [paper], [arXiv]
-
Evrard Garcelon, Vashist Avadhanula, Alessandro Lazaric, Matteo Pirotta:
Top K Ranking for Multi-Armed Bandit with Noisy Evaluations.
AISTATS 2021, Virtual. [paper], [arXiv]
-
Evrard Garcelon, Vianney Perchet, Matteo Pirotta:
Homomorphically Encrypted Linear Contextual Bandit.
AISTATS 2021, Virtual. [paper], [arXiv]
-
Evrard Garcelon, Kamalika Chaudhuri, Vianney Perchet, Matteo Pirotta:
Privacy Amplification via Shuffling for Linear Contextual Bandits.
ALT 2022, Virtual. [paper], [arXiv]
-
Matteo Papini, Andrea Tirinzoni, Aldo Pacchiano, Marcello Restelli, Alessandro Lazaric, Matteo Pirotta:
Reinforcement Learning in Linear MDPs: Constant Regret and Representation Selection.
NeurIPS 2021, Virtual. [paper], [arXiv]
-
Jean Tarbouriech, Runlong Zhou, Simon S. Du, Matteo Pirotta, Michal Valko, Alessandro Lazaric:
Stochastic Shortest Path: Minimax, Parameter-Free and Towards Horizon-Free Regret.
NeurIPS 2021, Virtual. [paper], [arXiv]
-
Jean Tarbouriech, Matteo Pirotta, Michal Valko and Alessandro Lazaric:
A Provably Efficient Sample Collection Strategy for Reinforcement Learning.
NeurIPS 2021, Virtual. [paper], [arXiv]
-
Evrard Garcelon, Vianney Perchet, Ciara Pike-Burke and Matteo Pirotta:
Local Differentially Private Regret Minimization in Reinforcement Learning.
NeurIPS 2021, Virtual. [paper], [arXiv]
-
Matteo Papini, Andrea Tirinzoni, Marcello Restelli, Alessandro Lazaric, Matteo Pirotta:
Leveraging Good Representations in Linear Contextual Bandits.
ICML 2021, Virtual. [paper], [arXiv]
-
Omar Darwiche Domingues, Pierre Menar, Matteo Pirotta, Emilie Kaufmann and Michal Valko:
Kernel-Based Reinforcement Learning: A Finite-Time Analysis.
ICML 2021, Virtual. [arXiv]
-
Jean Tarbouriech, Matteo Pirotta, Michal Valko and Alessandro Lazaric:
Sample Complexity Bounds for Stochastic Shortest Path with a Generative Model.
ALT 2021, Virtual. [paper]
-
Omar Darwiche Domingues, Pierre Menar, Matteo Pirotta, Emilie Kaufmann and Michal Valko:
A Kernel-Based Approach to Non-Stationary Reinforcement Learning in Metric Spaces
AISTATS 2021, Virtual. [arXiv]
-
Andrea Tirinzoni, Matteo Pirotta, Marcello Restelli and Alessandro Lazaric:
An Asymptotically Optimal Primal-Dual Incremental Algorithm for Linear Contextual Bandits.
NeurIPS 2020, Virtual. [arXiv]
-
Jean Tarbouriech, Matteo Pirotta, Michal Valko and Alessandro Lazaric:
Improved Sample Complexity for Incremental Autonomous Exploration in MDPs.
NeurIPS 2020, Virtual. [arXiv]
-
Evrard Garcelon, Baptiste Roziere, Laurent Meunier, Jean Tarbouriech, Olivier Teytaud, Alessandro Lazaric and Matteo Pirotta:
Adversarial Attacks on Linear Contextual Bandits.
NeurIPS 2020, Virtual. [arXiv]
-
Jean Tarbouriech, Shubhanshu Shekhar, Matteo Pirotta, Mohammad Ghavamzadeh, Alessandro Lazaric:
Active Model Estimation in Markov Decision Processes
UAI 2020, Virtual. [arXiv][paper]
-
Evrard Garcelon, Mohammad Ghavamzadeh, Alessandro Lazaric and Matteo Pirotta:
Conservative Exploration in Reinforcement Learning.
AISTATS 2020, Palermo, Italy. [arXiv]
-
Andrea Zanette, David Brandfonbrener, Emma Brunskill, Matteo Pirotta and Alessandro Lazaric:
Frequentist Regret Bounds for Randomized Least-Squares Value Iteration.
AISTATS 2020, Palermo, Italy. [arXiv]
-
Evrard Garcelon, Mohammad Ghavamzadeh, Alessandro Lazaric and Matteo Pirotta:
Improved Algorithms for Conservative Exploration in Bandits.
AAAI 2020, New York, USA. [arXiv]
-
Ronald Ortner, Matteo Pirotta, Alessandro Lazaric, Ronald Fruit and Odalrici-Ambrym Maillard:
Regret Bounds for Learning State Representations in Reinforcement Learning.
NeurIPS 2019, Vancouver, Canada.
-
Jian Qian, Ronan Fruit, Matteo Pirotta and Alessandro Lazaric:
Exploration Bonus for Regret Minimization in Discrete and Continuous Average Reward MDPs.
NeurIPS 2019, Vancouver, Canada.
[arXiv] [Paper]
-
Ronan Fruit, Matteo Pirotta and Alessandro Lazaric:
Near Optimal Exploration-Exploitation in Non-Communicating Markov Decision Processes.
NeurIPS 2018, Montréal, Canada.
[arXiv] [Paper]
-
Ronan Fruit, Matteo Pirotta, Alessandro Lazaric and Ronald Ortner:
Efficient Bias-Span-Constrained Exploration-Exploitation in Reinforcement Learning.
ICML 2018, Stockholm, Sweden. [arXiv]
-
Matteo Papini, Damiano Binaghi, Giuseppe Canonaco, Matteo Pirotta and Marcello Restelli:
Stochastic Variance-Reduced Policy Gradient.
ICML 2018, Stockholm, Sweden. [arXiv] [Paper]
-
Andrea Tirinzoni, Andrea Sessa, Matteo Pirotta and Marcello Restelli:
Importance Weighted Transfer of Samples in Reinforcement Learning.
ICML 2018, Stockholm, Sweden. [arXiv] [Paper]
-
Davide Di Febbo, Emilia Ambrosini, Matteo Pirotta, Eric Rojas, Marcello Restelli, Alessandra Pedrocchi and Simona Ferrante:
Does Reinforcement Learning Outperform PID in the Control of FES Induced Elbow Flex-Extension? MeMeA 2018, Rome, Italy.
- Ronan Fruit, Matteo Pirotta, Alessandro Lazaric, and Emma Brunskill:
Regret Minimization in MDPs with Options without Prior Knowledge.
NIPS 2017, Long Beach, California, USA.
[Poster]
[Full Paper]
- Alberto Metelli, Matteo Pirotta, and Marcello Restelli:
Compatible Reward Inverse Reinforcement Learning.
NIPS 2017, Long Beach, California, USA.
[Poster]
[Paper]
- Matteo Papini, Matteo Pirotta, and Marcello Restelli:
Adaptive Batch Size for Safe Policy Gradients.
NIPS 2017, Long Beach, California, USA.
[Poster]
[Paper]
- Davide Tateo, Matteo Pirotta, Andrea Bonarini and Marcello Restelli:
Gradient-Based Minimization for Multi-Expert Inverse Reinforcement Learning.
IEEE SSCI 2017, Hawaii, USA.
- Samuele Tosatto, Matteo Pirotta, Carlo D'Eramo, and Marcello Restelli:
Boosted Fitted Q-Iteration.
ICML 2017, Sydney, New South Wales, Australia.
- Carlo D'Eramo, Alessandro Nuara, Matteo Pirotta, and Marcello Restelli:
Estimating the Maximum Expected Value in Continuous Reinforcement Learning Problems.
AAAI 2017, San Francisco, California, USA.
- Matteo Pirotta, and Marcello Restelli:
Inverse Reinforcement Learning through Policy Gradient Minimization.
AAAI 2016, Phoenix, Arizona, USA.
- Matteo Pirotta, Simone Parisi, and Marcello Restelli:
Multi-Objective Reinforcement Learning with Continuous Pareto Frontier Approximation.
AAAI 2015, Austin, Texas, USA.
- Caporale Danilo, Luca Deori, Roberto Mura, Alessandro Falsone, Riccardo Vignali, Luca Giulioni,
Matteo Pirotta and Giorgio Manganini:
Optimal Control to Reduce Emissions in Gasoline
Engines: An Iterative Learning Control Approach for ECU Calibration Maps Improvement.
ECC 2015, Linz, Austria.
- Giorgio Manganini, Matteo Pirotta, Marcello Restelli, Luca Bascetta:
Following Newton
Direction in Policy Gradient with Parameter Exploration.
IJCNN 2015, Killarney, Ireland.
- Simone Parisi, Matteo Pirotta, Nicola Smacchia, Luca Bascetta, Marcello Restelli:
Policy
Gradient Approaches for Multi-Objective Sequential Decision Making: A Comparison.
ADPRL 2014, Orlando, Florida, United States.
- Simone Parisi, Matteo Pirotta, Nicola Smacchia, Luca Bascetta and Marcello Restelli:
Policy
Gradient Approaches for Multi-Objective Sequential Decision Making.
IJCNN 2014, Beijing, China.
- Matteo Pirotta, Giorgio Manganini, Luigi Piroddi, Maria Prandini and Marcello Restelli:
A particle-based policy for the optimal control of Markov decision processes.
IFAC 2014, Cape Town, South Africa.
- Matteo Pirotta, Marcello Restelli, Luca Bascetta:
Adaptive Step-Size for Policy Gradient Methods.
NIPS 2013, Lake Tahoe, Nevada, USA.
- Matteo Pirotta, Marcello Restelli, Alessio Pecorino, and Daniele Calandriello:
Safe policy iteration.
ICML 2013, Atlanta, Georgia, USA. [Paper]
- Martino Migliavacca, Alessio Pecorino, Matteo Pirotta,
Marcello Restelli, and Andrea Bonarini:
Fitted Policy Search.
ADPRL 2011, Paris, France.
- Martino Migliavacca, Alessio Pecorino, Matteo Pirotta, Marcello Restelli, and Andrea Bonarini:
Fitted Policy Search: Direct Policy Search using a Batch Reinforcement Learning Approach.
ERLARS 2010, Lisboa, Portugal.
Journal Papers
-
Alberto Maria Metelli, Matteo Pirotta, Daniele Calandriello, Marcello Restelli:
Safe Policy Iteration: A Monotonically Improving Approximate Policy Iteration Approach.
JMLR 22(97), 2021. [Paper]
-
Simone Parisi, Matteo Pirotta and Jan Peters:
Manifold-based Multi-objective Policy Search with Sample Reuse.
Neurocomputing 263, 2017. [Paper]
-
Giorgio Manganini, Matteo Pirotta, Marcello Restelli, Luigi Piroddi, and
Maria Prandini:
Policy search for the optimal control of Markov decision processes:
a novel particle-based iterative scheme.
IEEE Transactions on Cybernetics 46, 2016. [Paper]
-
Simone Parisi, Matteo Pirotta and Marcello Restelli:
Multi-objective Reinforcement Learning through Continuous
Pareto Manifold Approximation.
Journal of Artificial Intelligence Research 57, 2016. [Paper]
-
Matteo Pirotta, Marcello Restelli and Luca Bascetta:
Policy Gradient in Lipschitz Markov Decision Processes.
Machine Learning 100, 2015. [Paper]
Technical Reports
-
Pierre-Alexandre Kamienny, Matteo Pirotta, Alessandro Lazaric, Thibault Lavril, Nicolas Usunier, Ludovic Denoyer:
Learning Adaptive Exploration Strategies in Dynamic Environments Through Informed Policy Regularization.
arXiv:2005.02934, 2020. [arXiv]
-
Ronan Fruit, Matteo Pirotta and Alessandro Lazaric:
Improved Analysis of UCRL2 with empirical Bernstein bounds.
ALT Tutorial, 2019. [arXiv]
-
Jian Qian, Ronan Fruit, Matteo Pirotta and Alessandro Lazaric:
Concentration Inequalities for Multinoulli Random Variables.
ALT Tutorial, 2019. [arXiv]
-
Matteo Pirotta and Marcello Restelli:
Cost-Sensitive Approach to Batch Size Adaptation for Gradient Descent.
Optimizing the optimizers, NIPS 2016 Workshop, Barcelona, Spain. [arXiv]